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BACKGROUND

* The primordial bispectrum and trispectrum™ are defined by

(P(k1)P(ks)P(ks))
(P(k1)®(ko)P(ksP(ky))

(27’(’)35(1{1 .

B s

(27’(’)35(1{1 ]

N kB)B(kla k27 kB)

S oid

ks +ka)T(kq, ko, k3, ka)

* For the CMB the bispectrum and trispectrum™ are defined by

<al1m1al2m2al3m3> o </ dzﬁ}/hml (ﬁ)}/lzmz (ﬁ)lesms (ﬁ)) bl1l2l3

<al1m1al2m2a53m3al4m4> = (/ d2ﬁ}/l1m1 (ﬂ)}/bmz (ﬁ)Ylsm3 (ﬁ)}/lélmél (ﬁ)> tl1lzl3l4

* Here we are considering for simplicity only diagonal free trispectra. In general isotropic trispectra
depend on 6 parameters, (to uniquely define the quadrilateral) eg. 4 lengths and 2 angles. Al
statements we will make can be extended to general trispecra but my equations are long enough

already.
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BACKGROUND

* The two are related by a projection by transfer functions

3 3 A R
. / (6; :)13 . (‘; 7f) < Ba) (k) = Ap (ol - A (R (10 NS £ 108

* [he delta function in the primordial definition can be
expanded as s ) - [zt

= 47rz (/:1: dxjy, klx)...j%(kpx)> (/ d*RXYr (x)...m;m;(@) Yoy (K1) - - Yoo (kp)
* I he reduced quantities are then related by

e . . .

bl1l2l3 == (;) /£U2d$/dk‘ldkgdk‘:g(klk‘gkg)QB(kl,kg,kg)All (kl)AZQ(kQ)Al3(]€3)]ll(33]{31)][2(33]{32)]13((13]{33)
TN .

tl1l2l3l4 P (;) /332d£lj‘/dkldedkgdk4(k1k2k3k4)2T(k1,kg,kg,k4)Al1(kl)AZQ(kg)AZB(kg)Al4(k4)]l1 (SBkl)
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BACKGROUND
e <%>B/Vk (k%kgkgB(kl,kg,k3)>

><(All(kl)AZQ(kQ)Al:a(kii)/x2dmjll(mkl)jZQ(ka)jl3($k3)>
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BACKGROUND

~or a general polyspectrum the estimator takes the general
form

=) —1 «“r ’
<al1m1 0B D alpmp>fNL:]. Cllmllllmll c oo Clpmpl;gm; (alimi o oo al;m; s Llneal' )

i —1
Lim;lm/ <al1m1 e alpmp>fNL=1 Cllmllllmll vy Clpmpl;m; <al,1m/1 b al;m;>fNL=1

where “Linear” will be explained later.

Sunday, 4 September 2011



BACKGROUND

This Is very very difficult to calculate in general as 1t 1s a sum
over [°P elements which are themselves difficult to calculate

Sl =l T 3 29
<al1m1 o o . alpmp>fNL:]. Cllmllllmll 5 5o Clpmpl;gm; (alimi o o al;m; Llneal' )

] —1
lzmzl;m; <al1m1 51310 alpmp>fNL:1 Cllmll/lm/l o0k Clpmpl;m; <al,1m/1 o 0 c a}l;m;>fNL:]_

<al1’m1 Alymo Alsms >

( / dwlml<ﬁm2m2<ﬁm3m3<ﬁ>) B

<a’llm1 Aloms Alzmz Alymy >

(/ dzlﬁ/Yllml (ﬂ)iflgmg (ﬁ)}/lgm;g (ﬁ)l/l4m4 (ﬁ)) tl1l2l3l4
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BACKGROUND

* The only quantity that connects different | in the estimator Is
the CMB polyspectrum. And the only reason they are
connected Is through the corresponding primordial
polyspectrum. All other parts are functions of a single k or |

* It we could write the primordial bispectra as the product of
functions of single k then all the equations simplify.

9 3
bl 1ty = (;) / (k%kgkgB(kl,kz,k3)>
Vi

X (All(kl)ﬁlz(kz)ﬁzg(%)/CCQdCBJ'll(wkl)jlg(wkz)Jlg(wkS))
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SEPARABILITY

* [he result Is compact expressions of which the hardest to
evaluate 1s only 3D

B(/{Tl, k‘g, kg) — X(k’l)Y(k‘Q)Z(k’g) + 9 permutations.

b1,151, = /xQd:z;Xll(x)ﬁZ ()7, (x) + 5 permutations
1
£= = / d33 M x (x) My (3) Mz (%)

~

X;(x) = / K2dk X (k)A(k)j (k) le )Yim (X Z @
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LINEAR TERM

* [he linear term for the bispectrum Is

R e Alimq, Aloms =~ Alames

Including 1t, the estimator becomes
1
-~ / @ (Mx (x) My (x) Mz(x) — 3 < M (%) My (x) > Mz(x))

and rather than calculate the full covariance matrix we just need
to calculate the average of the product map.

ZXZ Ylm Z lml m/’

10
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EXPERIMENTAL EFFECTS!?

* In a real experiment we must include the effect of beams

noise and the mask
b1,1515 — [skybi,01501501,1515

Ci — fsky (b7C1 + Ny

P G|

il
M 0
e s
- ,Q‘ \ A
e SN
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SHAPE FUNCTION

* We wish to find a separable representation for
bispectrum. As the bispectrum will be scale (or

the primordial

hseudo scale)

invariant (ie B(k, k, k) oc k~°) it make sense to weight it
before decomposition to flatten it out. Remembering

9 3
Vi

X (Ah(kl)Alz(kQ)Alg(kS) / w*dw i, (wk1) g, (wkz) i, (wk3)>

we see that we have a factor (kikaks)? in front of the
primordial bispectrum so we use It to divide out the scale

defining a shape function:

S(k1, ko, k3) = (k1kaks)? B(k1, ko, ks3)
12
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ORTHONORMAL BASIS

What we would like Is a basis which i1s both separable and
orthonormal (for a surtable inner product) to expand the
shape function In

S(k1, ko, k3) Z@n (k1, k2, k3)

R, (K1, ko, k3) = r(kl) (ko)r(k3) + 5 permutations
SR — 0

Ihen we could handle any model.
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ORTHONORMAL BASIS

How to choose the inner product! Conservation of

momentum requires the three k to obey the triangle

condition and, as In the estimator we will be working to a

particular maximum |, we wi
particular maximum k and ¢

| also restrict ourselves to a

noose our weight to be flat

(R, R,,) — / R.R.dV
)%

(LO.L)
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ORTHONORMAL BASIS

* Now how to construct our R!

Ry (k1,k2,k3) = ) AamQm (b1, k2, ks)

@l ko, ks) = é (qi(k1)q;(k2)qr(ks) + 5 (permutations))

Where the g are arbritrary functions and A,,,,, 1S the product of
some orthogonalisation procedure. We must also chose an

ordering . oo

4 — 111 8 — 022 12 — 113
1 — 001 b — 012 9 — 013 13 — 023
2 — 011 6 — 003 10 — 004 14 — 014
3 — 002 7T — 112 11 — 122 15— 005 ---

|5
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ORTHONORMAL BASIS

011 — k1ko + koks + k3kq 002 — k% s k% = k% 111 — k1koks
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ORTHONORMAL BASIS

Now we need to calculate \,,,,

<Ran> e )\nr)\ms <QT‘QS>

<QTQS> — s
I = xy)t
And rearranging, noting that \,,,, Is lower -

rlangu

ar, we find 1t

s the Inverse of the Cholesky decomposit

v = )\—1)\—1T

ion of 1

‘he Yrs matrix
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ORTHONORMAL BASIS

Now we need to calculate the coetfficients for the expansion

D= ZafRn =— Za%@n
ot = (AR

04@ e Vfr:fr}z <SQm>

n
R e )
IR 2 >‘ nmam




ORTHONORMAL BASIS

We can now use this method to calculate the CMB
bispectrum

s E : QNHn
bl1l2l3 2 an Qlllglg
n

~n o ’i e ~k
OF 11, = / P2deil (@)@, (2)8 ()

And estimator  ¢= 1374,

eeeeeeeeeeeeeeeeeeeee



WMAP EXAMP

T we consider the three models constral
find they can be represented by the fol
monomials for the g and an ordering w

[ ES

ined by WMAP we

owing choices of

nich only includes

scale Invariant combinations.

QO('ZC) k™ ; 0 — 003 Cchcg)ca,l =
ql(k) =i 1 — 012 aggui
g2 (k) = k 2 — 111 0

5 X ortho
C]3(k) —31 5

The only difference Is
can read off the coe!

20

=00}
={-1,1, -2}
={-3, 3, —8}

they never use orthonormality as they
Ticients directly from their templates
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WMAP EXAMPLES

There are limitations to this method. The first is by choosing
monomials for g we can only use up to 1=3 before the
projection integral fails to converge

3(x) = / dk s (k) A (k)i (k)

qgo(k) =k~
g = 1
Thisis why 1t Is much better to choose mgki B -
pElfceciunctions eqg. Legendre . ]
bolynomials or Fourier modes as the ¢~ @3(k) =k

Note: Due to the orthogonalisation procedure all polynomial choices lead to the same R. They only
affect the stability of the method

Al
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WMAP EXAMPLES

The main problem with the primordial approach Is that the
projection from early to late time is in the “observational 8,
rather than the “theoretical’ an. As you need to average over
many maps to obtain error bars, and to calculate the linear
term, this Is very inefficient.
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NOTATION

What It we start instead decomposing the CMB bispectrum!?
Starting with the estimator

—1 —1 «r 9
g <a/l1m1 - oo alpmp>fNL:1 Cllmll/lm/l s % Clpmpl;m’ (a/l/lmfl SRR (]J%m; s Llnear )

p

—1 —1
lzmzl;m; <Cl,llm1 SNt a/lpmp>fNL:1 Cllmll/lm/l o o o Clpmpl;)m;, <Cl’l/1’l’7’l,{L o« o e al;m;>fNL:]_

We can put this In a general form by defining

) = Ao Diomes-Ti )
] Al T —1 —1
Q@go’ Ty Cllml,l’lm’l"'clpmp,l;mép

Where # represents the p = {l1,m1,l2,ma, ..., lp, my } degrees
of freedom
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NOTATION

The estimator for a general polyspectrum Is then defined as

Zp@,(a@@;gj (ap — a2?)

Zg) o <%>¢;é/ (ap)

£ =

lin

where a

s the appropriate linear term

Pich

Sunday, 4 September 2011



NOTATION

We will now go one step further by defining the weighted
vectors (and matrix)

A@ s <Clp> B, = 0y — a{p’m i Cop
Nenere /T, Cr o, \/Czlcz; G}y, O,

And we can then write the estimator in matrix form as

ienl

i iy

L
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CMB BASIS

T we then suppose the existence of an orthonormal basis at
ate time

Z RooRo . =0, (KR

again built from some separable function

S
7?/ fdanllml (H)Yl2m2( )Ylgmg(

ng = Rnl1l2l3
U1, U1,V

Rnlllzls D S\annlllglg (: 4iq;qK D perms)

ZO_[ R Ullvlgvlgblllglg
n ’nlllglg =0
\/Cllclz Cl:s

26
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CMB BASIS

Then we can decompose our theory representing It as a set
of modal coefficients

e o)., (4" e

a=TRA
We will truncate our basis at some nmax so so we can also
define a projection operator
P=R'R
And we take our theory to be completely described by this
basis

PA = A

LTl
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VWe can perts

to obtain

orm t

the es

CMB BASIS

d

|ago

a =
B

ne same modal decomposition on the d
imat

or (we will assume the covariance |

nal fornow so C =1)
RA— A=R"a
RB — PB=R"p

L
£ =S

D7

ata
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CMB EXAMPLES

Most late time methods can be written In -

this torm. IRRer ekl

difference 1s orthonormalr

D/

For wavelets we chose the g to be the harmonic transform
of the wavelet with differing sizes. They then build all

combinations to form Q

For binned approaches the g are top hat
relevant | ranges. [ heir combinations pic

functions for the
k out Individual

sections of the bispectrum

All approaches are modal!

30
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ORTHONORMAL BASIS

Now we have some nice properties. First
< B >=a
the normalisation for the estimator Is trivial
. Yab
2. 07
and also all the projection i1s now In the calculation of alpha
S0 e pledess S nltldn) haelis EnlieE

* see the lecture of Casaponsa on Monday evening

&l
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ORTHONORMAL BASIS

And the covariance of A (which gives the variance of the
estimator) reveals the importance of the linear term.

<B B /> - <<R e Alymq Aloms Algmg — SOllml,lngCng,mg)
n Pn’) = E nlilals

ol m, VCi,C,C,
X (alim&aléméalémé — 3 Cmi tymy Gigmy Rl ll) >
\/Cl/lCl/QClé et ol
o s [ e A e K e s e
Limglom) \/011012 Cl?, Cl’ Ol’ Cl’ G 22 e g

4+ € <al1m1 Alsmo > <afl’17n’1 al’2m’2 > <a'l3m3 a'lémé> — & Cllml Jdomo <afl’1”m’1 a'l’2m’2 > <aflgm3 alémg>

: 9 <afl1m1al2m2>Cl’ mll,lémé <al3m3 além:’3> —|_ 9 Cllml,lg??’LQ Cl’lm’l,lémé <al3m3 alémé> —l_ i|

n! 1151

it 6 Z R Cllml,l/lmll Clgmg,lémé Clgm;g,lémé 7?
nl1l2l3
N enenerenaner

Limglim;

= 5T

= 6RCR" =61

1Y
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ORTHONORMAL BASIS

T we also calculate the decomposition of the primordial basis
modes projected forward

R =) (7’%1 = | R(k) x A>
Vi

Then we can transform between the primordial and CMB
expansions

a~ =Ta'™

(o‘zQ — E\F)\_lTon)

55




CONVERGENCE

First, does it work!?

1 | T | 5 5 — 3 o ——
0.9 e
0.8 s
0.7 =
0.6 .

—*=Primordial Equi
D& —*—Primordial DBI =
—*— Late-Time Equi
—* Late-Time DBEI
04— —*Cosmic strings | =
0.3 I l L | ] | | | | | l 1 I { 1 |

o 1 2 3 4 5 B Fi a8 9 10 11 12 13 14 15
Modes

Correlation between decomposition and original bispectra,
both primordial and CMB
34
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=S TIMATION

We have used these methods to constrain all scale invariant

models......
I'np %Z@ Zalocal

Model N, (f~1)
Constant 35.1 £27.4 |(149.4 £ 116.8)
DBI 26.7 £ 26.5 | (146.0 4= 144.5)
Equilateral 25.1 £26.4 |(143.5+151.2)
Flat (Smoothed)| 35.4 +29.2 | (18.1 4+14.9)
Ghost 22.0 £ 26.3 | (138.7 & 165.4)
Local 54.4 £29.4 | (54.4 +29.4)
Orthogonal —16.3 £ 27.3 |(—79.4 £ 133.3)
Single 28.8 £26.6 |(142.1 +£131.3)
Warm AL S DTS (94.7 i 106.8)

55
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=S TIMATION

and an oscillatory model for a range of parameter space

1 ki + ko + k
STt (ko ko, ks) = ~ Sin <2w ! +3k?*+ T q>>
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=S TIMATION

Once we have the a for each theory we can compute
constrains for all of them simultaneously

> ap
£ =S

S/

eeeeeeeeeeeeeeeeeeeee



ESTIMATION

And a small selection of models via the trispectrum

Gl = 1.62 £+ 6.98 x 10°

064+ 7.20 x 10°

B — 3.02+7.27 x 10°
B 1.1 x10°°

38
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