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BACKGROUND

• The primordial bispectrum and trispectrum* are defined by

3

• For the CMB the bispectrum and trispectrum* are defined by

�al1m1al2m2al3m3� =
��

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

�
bl1l2l3

�al1m1al2m2al3m3al4m4� =
��

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)Yl4m4(n̂)

�
tl1l2l3l4

�Φ(k1)Φ(k2)Φ(k3)� = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3)

�Φ(k1)Φ(k2)Φ(k3Φ(k4)� = (2π)3δ(k1 + k2 + k3 + k4)T (k1, k2, k3, k4)

* Here we are considering for simplicity only diagonal free trispectra. In general isotropic trispectra 
depend on 6 parameters, (to uniquely define the quadrilateral) eg. 4 lengths and 2 angles. All 
statements we will make can be extended to general trispecra but my equations are long enough 
already.
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BACKGROUND

• The two are related by a projection by transfer functions

4

• The delta function in the primordial definition can be 
expanded as

< al1m1 . . . alpmp >=

�
d3k1
(2π)3

. . .
d3kp
(2π)3

< φ(k1) . . . φ(kp) > ∆l1(k1) . . .∆lp(kp)Yl1m1(k̂1) . . . Ylpmp(k̂p)

bl1l2l3 =

�
2

π

�3 �
x2dx

�
dk1dk2dk3(k1k2k3)

2B(k1, k2, k3)∆l1(k1)∆l2(k2)∆l3(k3)jl1(xk1)jl2(xk2)jl3(xk3)

tl1l2l3l4 =

�
2

π

�4 �
x2dx

�
dk1dk2dk3dk4(k1k2k3k4)

2T (k1, k2, k3, k4)∆l1(k1)∆l2(k2)∆l3(k3)∆l4(k4)jl1(xk1)....

• The reduced quantities are then related by

δ(
p�

1

ki) =

�
d3xeix·(

�p
1 ki)

= 4π
�

l�im
�
i

��
x2dxjl�1(k1x) . . . jl�p(kpx)

���
d2x̂Yl�1m

�
1
(x̂) . . . Yl�pm

�
p
(x̂)

�
Yl�1m

�
1
(k̂1) . . . Yl�pm

�
p
(k̂p)
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BACKGROUND

5

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

×∆=

�

Vk

bl1l2l3 =

�
2

π

�3 �

Vk

�
k21k

2
2k

2
3B(k1, k2, k3)

�

×
�
∆l1(k1)∆l2(k2)∆l3(k3)

�
x2dxjl1(xk1)jl2(xk2)jl3(xk3)

�
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BACKGROUND

6

For a general polyspectrum the estimator takes the general 
form 

where “Linear” will be explained later.

E =
�

limil�im
�
i

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p
− “Linear”

�

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p

�

fNL=1

E = × / 2
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BACKGROUND

7

This is very very difficult to calculate in general as it is a sum 
over     elements which are themselves difficult to calculate 

E =
�

limil�im
�
i

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p
− “Linear”

�

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p

�

fNL=1

l2p

�al1m1al2m2al3m3� =
��

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

�
bl1l2l3

�al1m1al2m2al3m3al4m4� =
��

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)Yl4m4(n̂)

�
tl1l2l3l4

Sunday, 4 September 2011



BACKGROUND

• The only quantity that connects different l in the estimator is 
the CMB polyspectrum. And the only reason they are 
connected is through the corresponding primordial 
polyspectrum. All other parts are functions of a single k or l

• If we could write the primordial bispectra as the product of 
functions of single k then all the equations simplify.

8

bl1l2l3 =

�
2

π

�3 �

Vk

�
k21k

2
2k

2
3B(k1, k2, k3)

�

×
�
∆l1(k1)∆l2(k2)∆l3(k3)

�
x2dxjl1(xk1)jl2(xk2)jl3(xk3)

�
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SEPARABILITY
• The result is compact expressions of which the hardest to 

evaluate is only 3D

9

B(k1, k2, k3) = X(k1)Y (k2)Z(k3) + 5 permutations.

E =
1

N

�
d3xMX(x)MY (x)MZ(x)

X̃l(x) =

�
k2dkX(k)∆l(k)jl(kx) MX(x) =

�

lm

X̃l(x)Ylm(x̂)
�

l�m�

C−1
lml�m�al�m�

bl1l2l3 =

�
x2dxX̃l1(x)Ỹl2(x)Z̃l3(x) + 5 permutations
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LINEAR TERM

• The linear term for the bispectrum is

10

3 < al1m1al2m2 > al3m3

Including it, the estimator becomes

E =
1

N

�
d3x (MX(x)MY (x)MZ(x)− 3 < MX(x)MY (x) > MZ(x))

and rather than calculate the full covariance matrix we just need 
to calculate the average of the product map.

MX(x) =
�

lm

X̃l(x)Ylm(x̂)
�

l�m�

C−1
lml�m�al�m�
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EXPERIMENTAL EFFECTS?

• In a real experiment we must include the effect of beams 
noise and the mask

11

bl1l2l3 → fskybl1bl2bl3bl1l2l3

Cl → fsky
�
b2lCl +Nl

�
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SHAPE FUNCTION

•We wish to find a separable representation for the primordial 
bispectrum. As the bispectrum will be scale (or pseudo scale) 
invariant (ie                         ) it make sense to weight it 
before decomposition to flatten it out. Remembering

12

B(k, k, k) ∝ k−6

we see that we have a factor                in front of the 
primordial bispectrum so we use it to divide out the scale 
defining a shape function:

(k1k2k3)
2

S(k1, k2, k3) = (k1k2k3)
2B(k1, k2, k3)

bl1l2l3 =

�
2

π

�3 �

Vk

�
k21k

2
2k

2
3B(k1, k2, k3)

�

×
�
∆l1(k1)∆l2(k2)∆l3(k3)

�
x2dxjl1(xk1)jl2(xk2)jl3(xk3)

�

Sunday, 4 September 2011



ORTHONORMAL BASIS
What we would like is a basis which is both separable and 
orthonormal (for a suitable inner product) to expand the 

shape function in

13

S(k1, k2, k3) =
�

n

αnRn(k1, k2, k3)

Rn(k1, k2, k3) = r(k1)r(k2)r(k3) + 5 permutations

�RnRm� = δnm

Then we could handle any model.
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ORTHONORMAL BASIS
How to choose the inner product? Conservation of 
momentum requires the three k to obey the triangle 

condition and, as in the estimator we will be working to a 
particular maximum l, we will also restrict ourselves to a 
particular maximum k and choose our weight to be flat

10

Figure 2: Tetrahedral domain (‘tetrapyd’) for allowed multipole values l for the CMB bispectrum bl1l2l3 or, with wavenumbers
k for the primordial bispectrum B(k1, k2, k3)). The regular tetrahedral region defined up to the equilateral slice l1 + l2 + l3 ≤
2lmax ≡ 2L (shaded brown) contains two thirds of the overall volume. The rest of the domain is given by the regular triangular
pyramid on top which fills the volume to the corner of the encompassing cube defined by l1, l2, l3 ≤ L. An origami tetrapyd is
also shown (right) with folding instructions.

A. Tetrahedral domain and weight functions

In Fourier space, the primordial bispectrum B(k1, k2, k3) is defined when the three wavevectors k1, k2, k3

close to form a triangle k1 + k2 + k3 = 0. Since each such triangle is uniquely defined by the lengths of its

sides k1 = |k1|, k2 = |k2|, k3 = |k3|, we only require wavenumbers in the bispectrum argument. In terms of

these three wavenumbers, the triangle condition restricts the allowed combinations into a tetrahedral region

defined by

k1 ≤ k2 + k3 for k1 ≥ k2, k3, or k2 ≤ k1 + k3 for k2 ≥ k1, k3, or k3 ≤ k1 + k2 for k3 ≥ k1, k2 . (40)

This region forms a regular tetrahedron if we impose the restriction that k1 + k2 + k3 < 2kmax, however,

it is more natural to extend the domain out to values given by a maximum wavenumber in each direction

k1, k2, k3 ≤ kmax. This extension is motivated by issues both of separability and observation. The allowed

domain VT is then a hexahedron formed by the intersection of a tetrahedron and a cube. It can be obtained

from a regular tetrahedron (two-thirds of the total volume) by gluing on top a regular triangular pyramid

constructed from the corner of the cube (as illustrated in fig. 2). For brevity, let us denote this asymmetric

triangular bipyramid as a tetrapyd, from the merger of a tetrahedron and a pyramid. Of course, bispectrum

symmetries are such that it is only necessary to use one sixth of this domain, but aesthetics and intuition

are helped by keeping the full domain while making a restriction to symmetrised functions.

We will frequently need to integrate functions f(k1, k2, k3) over the tetrapyd domain (40), which for

brevity we will denote as VT with the integration given explicitly by

T [f ] ≡
�

VT
f(k1, k2, k3) w(k1, k2, k3) dVT (41)

= K3
�� 1/2

0

� 1−y
y

� x+y
x−y F W dz dx dy

� 1/2
0

� 1−x
x

� x+y
y−x F W dz dy dx+

+
� 1
1/2

� 1−x
x

� 1
x−y F W dz dy dx +

� 1
1/2

� 1−y
y

� 1
y−x F W dz dx dy

�
.

where K = kmax, w(k1, k2, k3) is an appropriate weight function, and we have made the transformation

x = k1/K, y = k2/K, x = k3/K with F (x, y, z) = f(Kx,Ky,Kz) and W (x, y, z) = w(Kx,Ky,Kz). For

14

�RnRm� =
�

V
RnRmdV
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ORTHONORMAL BASIS
•Now how to construct our R?

15

Rn(k1, k2, k3) =
�

m

λnmQm(k1, k2, k3)

Qm(k1, k2, k3) =
1

6
(qi(k1)qj(k2)qk(k3) + 5 (permutations))

Where the q are arbitrary functions and        is the product of 
some orthogonalisation procedure. We must also chose an 
ordering

λnm

16

where we use the notation {prs} to denote the six permutations of prs. Here, for convenience, we have

specified a one-to-one mapping n ↔ {prs} ordering the permuted indices into a list labelled by n (see below).

Alternatively, we could directly represent bispectra in a power series using sums of monomial symmetric

polynomials which like (56) are also separable; that is, we could identify our set of basis functions with the

following

1, x + y + z , xy + yz + zx , x2
+ y2

+ z2, xyz , x3
+ y3

+ z3, etc. (57)

The Qn(x, y, z) we defined in (56) are themselves ultimately constructed from these through the qp products.

However, the Qn have two distinct advantages which are, first, they already have partial orthogonality

built in which improves their convenience and convergence and, secondly, unlike the elements of (57),

the qp polynomials remain bounded and well-behaved when convolved with transfer functions, as we shall

emphasise in the map-making discussion.

Since we will be dealing with relatively small numbers of basis functions, it is convenient to order the

symmetric products Qn = q{p qr qs} linearly with a single index n; here we offer two comparable alternatives

for achieving this. The first is by ‘slicing’ such that triples are ordered by the sum p + r + s and the second

is by ‘distance’ from the origin, that is, p2
+ r2

+ s2
.

Slicing the prs naturally groups the Qn by the overall order of the polynomials from which they are made.

The subscript n, with a specific choice of sub-ordering, relates to the prs via

0 → 000 4 → 111 8 → 022 12 → 113

1 → 001 5 → 012 9 → 013 13 → 023

2 → 011 6 → 003 10 → 004 14 → 014 (58)

3 → 002 7 → 112 11 → 122 15 → 005 · · · ,

where we have underlined the transitions between polynomial order. The number dN of independent

symmetric polynomial products QnQpQr which can be formed at each polynomial order N is a combinatorial

problem but the sequence begins as follows and we give a recurrence relation for any further elements:

{dN} = {1, 1, 2, 3, 4, 5, 7, 8, 10, 12, ...} , dN = 1 + dN−2 + dN−3 − dN−5 . (59)

For consistency when using slicing we will usually decompose functions with polynomials up to a specific

order N .

The distance ordering of the Qn is more straightforward with

0 → 000 2 → 011 4 → 002 6 → 112 8 → 122

1 → 001 3 → 111 5 → 012 7 → 022 9 → 003 · · · . (60)

This approach is the analogue of state counting over spherical shells in the continuum limit and the basis

functions can be grouped accordingly. Distance ordering has some advantage by reshuffling to higher n the

pure states 00p which turn out to be most affected by masking.

While the Qn’s by construction are an independent set of three-dimensional basis functions on the domain

(40), they are not in general orthogonal. In fig. 7, we illustrate the inner product matrix γnp = �Qn, Qp�,
showing partial orthogonality (nearly diagonal γnp) because of their origin as products of orthogonal qr’s.

However, this is not sufficient because we need the convenience of a fully orthonormal basis to efficiently

decompose arbitrary bispectra. For this reason, we undertake an iterative Gram-Schmidt orthogonalisation

process to construct an orthonormal set Rn from the Qn, that is, satisfying

�Rn, Rp� = δnp . (61)

Formally, we have a Gram matrix Γ = (�Qn, Qp�) made from the independent functions Qn, and therefore

positive definite, which needs to be factorised as Γ = Λ�Λ where Λ = (�Qn, Rp�) is triangular (i.e. an LU

or Cholesky decomposition). As we require explicit relationships between Qn and Rn, we run through the

main steps in the Gram-Schmidt process.
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ORTHONORMAL BASIS
18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

16

α0 +α1

+α2 +α3 +α4 . . .

000 → 1 001 → k1 + k2 + k3

011 → k1k2 + k2k3 + k3k1 002 → k21 + k22 + k23 111 → k1k2k3

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

S(k1, k2, k3)

=
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ORTHONORMAL BASIS

17

Now we need to calculate λnm

�RnRm� = λnrλms �QrQs�
�QrQs� = γrs

I = λγλT

γ = λ−1λ−1T

And rearranging, noting that       is lower triangular, we find it 
is the inverse of the Cholesky decomposition of the     matrix

λnm

γrs
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ORTHONORMAL BASIS
Now we need to calculate the coefficients for the expansion

18

S =
�

n

αR
nRn =

�

n

αQ
nQn

αR
n = �SRn�

αQ
n = γ−1

nm �SQm�

αR
n = λ−1T

nmαQ
m

Sunday, 4 September 2011



ORTHONORMAL BASIS

19

We can now use this method to calculate the CMB 
bispectrum

And estimator E =
1

N

�

n

αnβn

βQ
n =

�
d3xMi(x)Mj(x)Mk(x)

Mi(x) =
�

lm

q̃il(x)Ylm(x̂)
�

l�m�

C−1
lml�m�al�m�

bl1l2l3 =
�

n

αQ
n Q̃

n
l1l2l3

Q̃n
l1l2l3 =

�
x2dxq̃{il1 (x)q̃

j
l2
(x)q̃k}l3 (x)

q̃il(x) =

�
dk qi(k)∆l(k)jl(xk)
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WMAP EXAMPLES

20

q0(k) = k−1

q1(k) = 1

q2(k) = k

q3(k) = k2

0 → 003

1 → 012

2 → 111

αQ
local = {2, 0, 0}
αQ
equi = {−1, 1, −2}

αQ
ortho = {−3, 3, −8}

If we consider the three models constrained by WMAP we 
find they can be represented by the following choices of 
monomials for the q and an ordering which only includes 

scale invariant combinations.

The only difference is they never use orthonormality as they 
can read off the coefficients directly from their templates
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WMAP EXAMPLES

21

q0(k) = k−1

q1(k) = 1

q2(k) = k

q3(k) = k2

There are limitations to this method. The first is by choosing 
monomials for q we can only use up to i=3 before the 

projection integral fails to converge

q̃il(x) =

�
dk qi(k)∆l(k)jl(xk)

This is why it is much better to choose 
bounded functions eq. Legendre 

polynomials or Fourier modes as the q

Note: Due to the orthogonalisation procedure all polynomial choices lead to the same R. They only 
affect the stability of the method
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WMAP EXAMPLES

22

The main problem with the primordial approach is that the 
projection from early to late time is in the “observational”     

rather than the “theoretical”    . As you need to average over 
many maps to obtain error bars, and to calculate the linear 

term, this is very inefficient.

βn

αn

E =
1

N

�

n

αnβn

βn =

�
d3xMi(x)Mj(x)Mk(x)

Mi(x) =
�

lm

q̃il(x)Ylm(x̂)
�

l�m�

C−1
lml�m�al�m�
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NOTATION

23

What if we start instead decomposing the CMB bispectrum?
Starting with the estimator 

�a℘� ≡ �al1m1al2m2 ...alpmp�

C−1
℘℘� ≡ C−1

l1m1,l�1m
�
1
...C−1

lpmp,l�pm
�
2p

We can put this in a general form by defining

Where    represents the                                        degrees 
of freedom  

℘ ℘ = {l1,m1, l2,m2, ..., lp,mp}

E =
�

limil�im
�
i

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p
− “Linear”

�

�
al1m1 . . . alpmp

�
fNL=1

C−1
l1m1l�1m

�
1
. . . C−1

lpmpl�pm
�
p

�
al�1m�

1
. . . al�pm�

p

�

fNL=1
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NOTATION

24

The estimator for a general polyspectrum is then defined as 

where      is the appropriate linear term

Ē ≡
�

℘℘��a℘�C−1
℘℘�

�
a℘ − alin℘

�
�

℘℘��a℘�C−1
℘℘��a℘�

alin℘
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NOTATION

25

We will now go one step further by defining the weighted 
vectors (and matrix) 

A℘ =
�a℘��

Cl1Cl2 ...Clp

, B℘ =
a℘ − alin℘�
Cl1Cl2 ...Clp

, C℘℘� =
C℘℘�

�
Cl1Cl�1

...ClpCl�p

,

Ē =
AT C−1B
AT C−1A

And we can then write the estimator in matrix form as
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CMB BASIS

26

If we then suppose the existence of an orthonormal basis at 
late time

again built from some separable functions

�

℘

R̄n℘R̄n�℘ = δnn� (R̄R̄T = I)

R̄ = λ̄Q̄

R̄n℘ =

�
d2nYl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

vl1vl2vl3
R̄n l1l2l3

R̄nl1l2l3 = λ̄nmQ̄nl1l2l3(= qiqjqk + 5 perms)

�

n

ᾱnR̄nl1l2l3 =
vl1vl2vl3bl1l2l3�

Cl1Cl2Cl3
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CMB BASIS

27

α = RA

Then we can decompose our theory representing it as a set 
of modal coefficients 

P = RTR

PA = A

We will truncate our basis at some nmax so so we can also 
define a projection operator

And we take our theory to be completely described by this 
basis

A℘ =
�

n

αnRn℘ (A = RTα)
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CMB BASIS

28

=
α0 α1

α2 α3

α4
......

+
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CMB BASIS

29

We can perform the same modal decomposition on the data 
to obtain the estimator (we will assume the covariance is 

diagonal for now so         )C = I

ᾱ = R̄A → A = R̄T ᾱ

β̄ = R̄B → PB = R̄T β̄

E =

�
ᾱβ̄�
ᾱ2
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CMB EXAMPLES

30

Most late time methods can be written in this form. The only 
difference is orthonormality

For wavelets we chose the q to be the harmonic transform 
of the wavelet with differing sizes. They then build all 

combinations to form Q

For binned approaches the q are top hat functions for the 
relevant l ranges. Their combinations pick out individual 

sections of the bispectrum

All approaches are modal!
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Now we have some nice properties. First

the normalisation for the estimator is trivial

and also all the projection is now in the calculation of alpha 
so the process is much more efficient*

* see the lecture of Casaponsa on Monday evening

E =

�
ᾱβ̄�
ᾱ2

< β̄ >= ᾱ
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And the covariance of    (which gives the variance of the 
estimator) reveals the importance of the linear term.

β

�β̄n β̄n�� =
�

limil�im
�
i
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If we also calculate the decomposition of the primordial basis 
modes projected forward

Then we can transform between the primordial and CMB 
expansions

ᾱR = ΓαR

�
ᾱQ = λ̄Γλ−1TαQ

�

�
R̃l =

�

Vk

R(k)×∆

�
R̄R̃T

= Γ
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Figure 9: Correlation of the reconstructed bispectra to the original for partial sums of the decomposition up to a given mode n.
The plot includes the primordial bispectra for the equilateral and DBI models, the CMB bispectrum for the equilateral and DBI
models and the CMB bispectrum produced at late times by cosmic strings. In all cases, we find that with 15 three-dimensional
modes we have a correlation greater than 98%, thus demonstrating very rapid convergence. For the CMB bispectra, convergence
is limited by matching the acoustic peaks introduced by the transfer functions, whereas the primordial models converge at 98%
accuracy with only 6 modes.

where the αQn can be obtained from the αRn as

αQn =
N�

p=0

(λ�)np αRp , (72)

with the transformation matrix λnp defined in (62) (this is triangular and not orthogonal in general). Note
the complication that αQn also contains contributions from Rp components with n < p ≤ N , since (λ�)np is
upper triangular. The inverse transformation

αRn =
N�

p

(λ−1)T
np αQp , (73)

has coefficients given by (λ−1)np = �Qn, Rn�. We have already noted that the degree of non-orthogonality
of the Qn basis is described by γnp = �Qn, Qp� in (64) which is in turn related to λnp through

(γ−1)np =
N�

r

(λ�)nrλrp . (74)

When substituted into Parseval’s theorem (70) in the Qn basis, we see that the coefficients of different
degrees become mixed as

�SN , S�N � =
N�

n

αRn
2 =

N�

n

N�

p

αQnγnpα
Q
p (75)

The separable Qn expansion (71) is important for most practical calculational purposes but its coefficients
are constructed at the outset using the orthonormal Rn. For interpreting results from the estimator it
is helpful to transform back to the Rn basis in order to understand the normalised spectrum αRn using
Parseval’s theorem (70). We finally note that all the transformation matrices, λnp and γnp in (64), need
only be calculated once, at the same time as the Rn polynomials are generated, and then stored for later
reference.

Correlation between decomposition and original bispectra, 
both primordial and CMB

34

First, does it work?
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Model FNL (fNL)

Constant 35.1± 27.4 (149.4± 116.8)

DBI 26.7± 26.5 (146.0± 144.5)

Equilateral 25.1± 26.4 (143.5± 151.2)

Flat (Smoothed) 35.4± 29.2 (18.1± 14.9)

Ghost 22.0± 26.3 (138.7± 165.4)

Local 54.4± 29.4 (54.4± 29.4)

Orthogonal −16.3± 27.3 (−79.4± 133.3)

Single 28.8± 26.6 (142.1± 131.3)

Warm 24.2± 27.3 (94.7± 106.8)

Table IV: Limits for all known scale invariant models

some models provide a better a posteriori fit to the data than others.
As we have emphasised throughout, more information can be extracted from the mode decomposition of

the data than a few FNL’s for specific models. Given that we have constructed a complete orthonormal
basis Rn we can use the mode coefficients β̄R

n to directly reconstruct the full CMB bispectrum using the
partial sum (30). We plotted the result for WMAP5 in fig. 6 which, despite its low significance, revealed
interesting qualitative features similar to the local model (4), but without the periodicity expected from
acoustic peaks. We discussed a positive-definite measure for the total integrated bispectrum constructed
from the mode coefficients F̄ 2

NL =
�

n β̄
R
n
2, which was used to recover fNL from map simulations in a model

independent manner (though with larger variance). For WMAP5 data the integrated F̄NL was found to be
small and again consistent with a Gaussian hypothesis.
Despite the absence of any convincing evidence for a statistically significant CMB bispectrum in the

present analysis, many avenues remain open for further investigation using the present methodology. The
late-time modal estimator (35) can identify any bispectrum whether generated at early times like inflation
or sourced since decoupling by cosmic strings, gravitational lensing, or second-order gravitational effects.
Unlike the primordial estimator, the general mode expansion can also be used to characterise noise and
foregrounds, which need to be identified and subtracted through the linear term in the estimator (12).
The efficacy of this removal and other validation checks which may affect a residual local signal will be
published shortly [15]. Finally, we note again that these methods can be pressed much further with existing
and future data, especially from Planck. The anticipated Planck variance ∆fNL ≈ 5 will substantially
improve sensitivity to specific bispectrum shapes, leaving significant discovery potential available in the
near future. We note also that these separable mode techniques have been adapted for general CMB
trispectrum estimation, in principle, making tractable the investigation of all planar primordial trispectra
[44]. Analogous methods can also be applied to modal bispectrum extraction for large-scale structure and in
other contexts. For the time being, however, this general bispectrum survey uncovers no significant evidence
of non-Gaussianity which would undermine the standard predictions of the simplest models of inflation.
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We have used these methods to constrain all scale invariant 
models......

FNL →
�

ᾱ2 =
�

ᾱ2
local
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�������Phase
Scale

150 200 250 300 400 500 600 700

0 57 (30) −52 (33) −25 (32) 1 (30) 1 (27) 8 (26) 18 (25) 23 (25)

π/8 67 (36) −26 (27) −36 (30) −6 (25) −4 (26) −2 (27) 12 (26) 20 (25)

π/4 68 (42) −10 (29) −43 (30) −11 (21) −7 (25) −10 (27) −1 (28) 13 (27)

3π/8 49 (46) 7 (34) −42 (32) −18 (24) −9 (25) −14 (26) −13 (28) −2 (28)

π/2 15 (46) 32 (41) −30 (35) −32 (34) −10 (25) −16 (25) −18 (27) −14 (28)

5π/8 −19 (42) 63 (46) −15 (35) −38 (43) −11 (25) −16 (25) −20 (26) −20 (27)

3π/4 −39 (35) 87 (48) 0 (35) −25 (41) −11 (26) −15 (25) −21 (25) −23 (26)

7π/8 −48 (30) 81 (43) 13 (34) −11 (35) −7 (27) −13 (25) −20 (25) −23 (25)

Table II: Limits for a selection of feature models in the form FNL (StDev).

the form

Sfeat
(k1, k2, k3) =

1

N
sin

�
2π

k1 + k2 + k3
3k∗

+ Φ

�
, (52)

where k∗ is the associated with the physical scale of the feature in question and Φ is an arbitrary phase

factor. The alternative form with a logarithmic momentum dependence in the sin argument can be shown

to be closely correlated with the simpler form (52), certainly on the present domain of study lmax = 500.

Previously, we studied the shape and CMB bispectrum for a particular feature model (with k∗ ≈ l∗/τ0 and

l∗ ≈ 400), showing that its non-scaling behaviour made it essentially independent of all the other shapes

[5]. Such models can have starkly contrasting CMB bispectra as illustrated in fig. 18, disrupting the usual

pattern of acoustic peaks which switch from correlation to anticorrelation on multipole scales l∗. Clearly,

scale dependent feature models form a distinct category of bispectra beyond the equilateral, local, warm

and flat families, so searches within WMAP and future data sets are well-motivated.

For the present WMAP5 analysis, we have studied the primordial feature shape (52) over a wide range of

for which the CMB bispectra that we obtained could be accurately described by our n = 31 eigenmodes, that

is, for which we could obtain > 90% convergence to bfeatl1l2l3
for the partial sum (22). This restricted the scale

parameters in (52) to the range l∗ ≥ 150, so we studied values l∗ = 150, 200, 250, 300, 400, 500, 600, 700.
For larger values l∗ > 700 the models became highly correlated with the constant model given that lmax =

500. No such restriction applied to the phase which was studied for each l∗ over the full domain 0 ≤ Φ < 2π
in π/8 steps (noting that models separated by π are merely anticorrelated). This entailed considerable

computational effort calculating 64 distinct CMB bispectra at high accuracy using the robust methods

previously described elsewhere [43]. The mode coefficients for the l∗ = 400 model are illustrated for the

different phases in fig. 15, demonstrating how the characteristic acoustic peak signal in n = 3, 4, 5 can

be modified (compare the constant model fig. 9). The strong dependence of the mode coefficients on the

different multipole scales l∗ (at fixed phase Φ = 0) are shown in fig. 15.

Results from the modal estimator for all the feature models investigated are provided in Table II. Note

that the constraints are given in terms of the normalised quantity FNL defined in (16), since there is no

simple generalisation of the primordial normalisation used for fNL without scale-invariance. As before,

the variances (given in parentheses) are those obtained for the same set of models from 1000 Gaussian

simulations. The results are illustrated graphically in fig. 16 showing the relative significance of the central

FNL values relative to the standard deviation. The result with the highest significance is that for the feature

model with l∗ = 150 and zero phase which achieves a 1.9σ significance. The 3D bispectrum for this model

is shown in fig. 18 demonstrating how such models can reproduce the apparent scale-dependence observed

in the WMAP bispectrum (see fig. 6). However, we note that this model is close to the resolution limit set

by the eigenmodes deployed (like the other cases of higher significance). The results over the full domain

of feature models investigated remain consistent with the Gaussian hypothesis with no significant detection

found on the WMAP domain for l ≤ 500.

and an oscillatory model for a range of parameter space
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Once we have the    for each theory we can compute 
constrains for all of them simultaneously

α

E =

�
ᾱβ̄�
ᾱ2

Sunday, 4 September 2011



ESTIMATION

38

And a small selection of models via the trispectrum

Glocal
NL = 1.62± 6.98× 105

Gconst
NL = −2.64± 7.20× 105

Gequi
NL = −3.02± 7.27× 105

Gµ < 1.1× 10−6
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