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Historical importance of orbiting systems.

Binary systems, or other orbiting systems, have not just been inter-

esting astrophysical systems; they have historically played a key role

in developing our understanding of physics.

• Galileo’s observations of the moons of Jupiter put the final nail

in the geocentric model of the solar system and suggested that

there might be some natural law involved in producing orbits.

• Rømer in 1676 (even before Newton published the Principia in

1687) measured the speed of light for the first time by observing

the retardation in the arrival time of light from Jupiter’s moons

when they were on the far side of Jupiter compared to when they

were nearer the Earth. (His data give a value that is within 30%

of today’s accepted value for c.)

• Newton found the natural law governing orbits by studying the

Moon’s orbit around the Earth, and then applied it to the known
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solar system to show that Kepler’s laws of planetary motion were

a natural consequence of 1/r2 gravity.

• Nineteenth-century astronomers discovered the small discrep-

ancy in the precession of the orbit of Mercury that presaged

general relativity. Einstein understood how important it was

that he could derive this extra precession from his new theory:

when he got the result, he reported later, he has palpitations of

the heart for a full three days!

• Observations of the shrinking of the orbit of the Hulse-Taylor

binary system (see below) have now tested the dynamical part

of GR (i.e. tested gravitational wave theory) to better than 1%.

• Gravitational-wave observations of binaries that shrink, like the

Hulse-Taylor system, will be able to measure their distances di-

rectly from the signal, and therefore provide a check on the usual

astronomical distance ladder and a new way of measuring cos-

mological parameters (see below). They will also begin to test

GR stringently in strong gravitational fields.

The utility of binaries for making fundamental measurements lies

in their simplicity. Mostly they can be idealized as orbiting point

particles, so very little modeling is necessary. Astrophysical models

(of complex systems like stars, supernovae, galaxy formation, and so

on) involve considerable physics, and often makes assumptions that

are hard to test. This leads to uncertainties that prevent complex

systems from being used to test physical laws. Binaries, however, are

simple to observe and model, and so they are good testbeds.

We proceed now to compute the gravitational waves expected from

a simple binary system.
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Mass-quadrupole radiation.

First we consider the field of a source in linearized theory. We use a

slow-motion approximation to compute the radiated field. The com-

putation proceeds in close analogy to the derivation of the electric-

dipole radiation from Maxwell’s equations. Note that linearized the-

ory is not very realistic: the orbits of a simple Newtonian system

require an interaction between the body and the field, which is a

second-order term and is thus not present in linearized theory. Nev-

ertheless, remarkably, the approach we take will lead to a formula

that is identical in Newtonian theory. The problem of radiation in

linearized theory was first solved by Einstein in 1918, but it took until

the 1950s and 1960s before the generalization to Newtonian systems

was well understood.

• Isolated source The Einstein equation is− ∂2

∂t2
+∇2

 h̄αβ = −16πT αβ.

Its general solution is the following retarded integral for the field

at a position xi and a time t in terms of the source at a position

yi and the retarded time:

h̄αβ(xi, t) = 4
∫ 1

R
T αβ(t−R, yi)d3y,

where we define

R2 = (xi − yi)(xi − yi).

• Expansion for the far field of a slow-motion source.

Let us suppose that the origin of coordinates is in or near the
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source, and the field point xi is far away. Then we define r2 =

xixi and we have r2 � yiyi. We can therefore expand the term

R in the denominator in terms of yi. The lowest order is r, and

all higher-order terms are smaller than this by powers of r−1.

Therefore, they contribute terms to the field that fall off faster

than 1/r, and they are negligible in the far zone. So we can

simply replace R by r in the denominator, and take it out of the

integral.

The R inside the time-argument of the source term is not so

simple. We handle that in the following way. Let us define

t′ = t − r (the retarded time to the origin of coordinates) and

expand

t−R = t− r + niyi +O(1/r), with ni = xi/r, nini = 1.

The terms of order 1/r are negligible for the same reason as

above, but the first term in this expansion must be taken into

account. It depends on the direction to the field point, given by

the unit vector ni. We use this by making a Taylor expansion in

time on the time-argument of the source. The combined effect

of these approximations is

h̄αβ =
4

r

∫ T αβ(t′, yi) + T αβ,0(t
′, yi)njyj +

1

2
T αβ,00(t

′, yi)njnkyjyk + . . .

 d3y.
We will need the Taylor expansion out to this order.

• Moments of the source. The integrals in the above expres-

sion contain moments of the components of the stress-energy. It

is useful to give these names. Use M for moments of the density

T 00, P for moments of the momentum T 0i, and S for moments

of the stress T ij. Here is our notation:

M(t′) =
∫
T 00(t′, yi)d3y, Mj(t

′) =
∫
T 00(t′, yi)yjd

3y,
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Mjk(t
′) =

∫
T 00(t′, yi)yjykd

3y;

P `(t′) =
∫
T 0`(t′, yi)d3y, P `

j(t
′) =

∫
T 0`(t′, yi)yjd

3y;

S`m(t′) =
∫
T `m(t′, yi)d3y.

These are the moments we will need.

Among these moments there are some identities that follow from

the conservation law in linearized theory, T αβ,β = 0, which we

use to replace time derivatives of components of T by divergences

of other components and then integrate by parts. The identities

we will need are

Ṁ = 0, Ṁk = P k, Ṁ jk = P jk + P kj;

Ṗ j = 0, Ṗ jk = Sjk.

These can be applied recursively to show, for example, one fur-

ther very useful relation:

d2M jk

dt2
= 2Sjk.

• Radiation zone expansions. Using these relations and no-

tation it is not hard to show that

h̄00(t, xi) =
4

r
M +

4

r
P jnj +

4

r
Sjk(t′) + . . . ;

h̄0j(t, xi) =
4

r
P j +

4

r
Sjk(t′)nk + . . . ;

h̄jk(t, xi) =
4

r
Sjk(t′) + . . . .

In these expressions, one must remember that the moments are

evaluated at the retarded time t′ = t− r (except for those mo-

ments that are constant in time), and they are multiplied by

components of the unit vector to the field point nj = x/r.
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The next step is to apply the TT gauge to the mass quadrupole field.

This has a close analogy to using the Lorentz gauge in electromag-

netism.

• Gauge transformations. We are already in Lorentz gauge,

and this can be checked by taking derivatives of the expressions

for the field that we have derived. But we are manifestly not in

TT gauge. Making a gauge transformation consists of choosing

a vector field ξα and modifying the metric by

hαβ → hαβ − ξα,β − ξβ,α.
The corresponding expression for the potential h̄αβ is

h̄αβ → h̄αβ − ξα,β − ξβ,α + ηαβξ
µ
µ.

For the different components this implies changes

δh̄00 = −ξ0,0 + ξj,j,

δh̄0j = −ξ0,j + ξj,0,

δh̄jk = −ξj,k − ξk,j + δjkξ``,

where δjk is the Kronecker delta (unit matrix). In practice, when

taking derivatives, the algebra is vastly simplified by the fact that

we are keeping only the 1/r terms in the potentials. This means

that spatial derivatives do not act on 1/r but only on t′ in the

arguments. Since t′ = t− r, it follows that ∂t′/∂xj = −nj, and

∂h(t′)/∂xj = −ḣ(t′)nj.

• The TT gauge transformation. The following vector field

puts the metric into TT gauge to the order we are working:

ξ0 = −1

r
P k

k −
1

r
P jknjnk,

ξi = −4

r
M i − 4

r
P ijnj +

1

r
P k

kn
i +

1

r
P jknjnkn

i.
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• The wave amplitude in TT gauge. The result of applying

this gauge transformation to the original amplitudes is:

h̄TT00 =
4M

r
;

h̄TT0i = 0;

h̄TTij =
4

r

⊥ik⊥j` Sk` +
1

2
⊥ij (Sk`n

kn` − Skk)
 ,

where the notation ⊥jk represents the projection operator per-

pendicular to the direction ni to the field point,

⊥jk= δjk − njnk.

It can be verified that this tensor is transverse to the direction

ni and is a projection, in the sense that it projects to itself:

⊥jk nk = 0, ⊥jk⊥ k
` =⊥j` .

The time component of the field is not totally eliminated in this

gauge transformation: it must contain the Newtonian field of the

source. (In fact we have succeeded in eliminating the momentum

part of the field, which is also static. Our gauge transformation

has incorporated a Lorentz transformation that has put us into

the rest frame of the source.) But this is a constant term. Since

waves are time-dependent, the time-dependent part of the field is

now purely spatial, transverse (because everything is multiplied

by ⊥), and traceless (as can be verified by explicit calculation).

The expression for the spatial part of the field actually does not

depend on the trace of Sjk, as can be seen by constructing the

trace-free part of the tensor, defined as:

S–jk = Sjk − 1

3
δjkS``.
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In fact, it is more conventional to use the mass moment here

instead of the stress, so we also define

M—jk = M jk − 1

3
δjkM `

`, S–jk =
1

2

d2M—jk

dt2
.

In terms of M— the far field is:

h̄TTij =
2

r

⊥ik⊥j` M̈—k` +
1

2
⊥ij M̈—k`n

kn`.



This is the mass quadrupole field. In other books the notation

is somewhat different than we have adopted here. In particular,

our quadrupole tensor M— is what is called I– in Misner, Thorne,

and Wheeler (1973) and Schutz (2009).

If we define the TT-part of the quadrupole tensor to be

MTT
ij =⊥ k

i ⊥ l
jMkl −

1

2
⊥ij⊥kl Mkl,

then we can rewrite the radiation field as

h̄TTij =
2

r

··
M

TTij.

• Interpretation of the radiation. It is useful to look at

this expression and ask what actually generates the radiation.

The source of the radiation is the second time-derivative of the

second moment of the mass density T 00. The moments that

are relevant are those in the plane perpendicular to the line of

sight. So it is interesting that not only is the action of the wave

transverse, but also the generation of radiation uses only the

transverse distribution of mass. In fact we learn from this two

equally important messages,
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– the only motions that produce the radiation are the ones

transverse to the line of sight; and

– the induced motions in a detector mirror the motions of the

source projected onto the plane of the sky.

If most of the mass is static, then the time-derivatives allow us

to concentrate only on the part that is changing.
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Next we consider the energy carried away by the radiation, and then

we consider relaxing the assumptions of linearized theory so we can

treat the more realistic self-gravitating systems with Newtonian and

post-Newtonian approximations.

• Mass quadrupole radiation. The radiation field we have

computed can be put into our energy flux formula for the TT

gauge, and this can be integrated over a sphere. It is not a diffi-

cult calculation, but it does require some simple angular integrals

over the vector ni, which depends on the angular direction on

the sphere. These identities are
∫
ninjdΩ =

4π

3
δij,

∫
ninjnkdΩ = 0,

∫
ninjnkn`dΩ =

4π

15

(
δijδk` + δikδj` + δi`δjk

)
.

Using these, one gets the following simple formula for the total

luminosity of the source if only mass-quadrupole radiation is

computed:

Lmassgw =
1

5

...
M—

jk ...
M—jk.

Note that luminosity is dimensionless in our units because
...
M—

is dimensionless: the three time derivatives just compensate the

mass and two distances in the quadrupole moment. In conven-

tional units the dimensions are c5/G. This is a big number, of

order 3× 1059 erg/s. It is believed to be an upper bound on the

luminosity of any physical system, and it is certainly far above

any observed luminosity, in fact above the total luminosity of

the universe.

If a binary system orbits in the very relativistic regime, then it

can get relatively close to this bound. Numerical simulations of
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black hole inspiral and merger show that the luminosity of such

a system reaches a peak that exceeds the luminosity of the rest

of the entire universe.

• Relaxation of restrictions of linearized theory. The

calculation so far has been within the assumptions of linearized

theory. Real sources are likely to have significant self-gravity.

This means, in particular, that there will be a significant com-

ponent of the source energy in gravitational potential energy,

and this must be taken into account.

Fortunately, the formulas we have derived are robust. It turns

out that the leading order radiation field from a Newtonian

source has the same formula as in linearized theory.
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Gravitational waves from a binary system

• The quadrupole moment of a binary system. The

motion of two stars in a binary is a classic source calculation. We

shall calculate here only for two equal-mass stars in a circular

orbit, governed by Newtonian dynamics. If the stars have mass

m and an orbital radius R, orbiting in the x − y plane with

angular velocity ω, then it is easy to show that their quadrupole

moment components are

Mxx = 2mR2 cos2(ωt), Myy = 2mR2 sin2(ωt),

Mxy = 2mR2 cos(ωt) sin(ωt).

By using trigonometric identities, we convert these to functions

of a frequency 2ω and discard the parts that do not depend on

time:

Mxx = mR2 cos(2ωt), Myy = −mR2 cos(2ωt),

Mxy = mR2 sin(2ωt).

This shows that the radiation will come out at twice the orbital

frequency, essentially because in half an orbital period the mass

distribution has returned to its original configuration.

The trace of the quadrupole tensor is already zero.

• The radiated field in different directions. The general

expression for the radiation field is hTTij = (2/r)M̈TTij.

1. Radiation perpendicular to the orbital plane. This is the

z-direction, and the tensor M is already transverse to it. So

the radiation components can be read off of M . We see that

h+ = −(8mω2R2/r) cos(2ωt) and h× = (8mω2R2/r) sin(2ωt).
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Both polarisations are present but are out of phase, so this

represents purely circularly polarised radiation.

2. Radiation along the x-axis. The xx and xy components

of M will be projected out, and when M is made trace-free

again its components become MTTyy = −(mR2/2) cos(2ωt)

and MTTzz = (mR2/2) cos(2ωt). This is pure +-polarised

radiation with amplitude 4mω2R2/r. This is half the am-

plitude of each of the polarisation components in the z-

direction, so the radiation is much weaker here. The energy

flux will be only 1/8 of the flux up the rotation axis. By sym-

metry this conclusion holds for any direction in the orbital

plane.

At directions between the ones we have calculated there will be a

mixture of polarisations, which leads to a general elliptically po-

larised wave. By measuring the polarisation received, a detector

(or network of detectors) can measure the angle of inclination of

the orbital plane of the binary to the line of sight. This is often

one of the hardest things to measure with optical observations of

binaries, so gravitational wave observations are complementary

to other observations of binaries.

• The energy radiated by the orbital motion. If we put

our quadrupole moment into the luminosity formula we get

Lgw =
16

5
m2R4ω6.

The various factors are not independent, however, because the

angular velocity is determined by the masses and radius of the

orbit. When observing such a system, we can’t usually measure

R directly, but we can infer ω from the observations and often
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make a guess at m. So we eliminate R using the Newtonian

orbit equation:

R3 =
m

4ω2
.

If in addition we use the gravitational wave frequency ωgw = 2ω,

we get

Lgw =
1

20
(mωgw)10/3.

• Back-reaction on the orbit. This energy must come from

the orbital energy, E = −mω2R2. The result is that we can

predict the rate of change of ωgw:

dE

dt
= −L, ⇒ ω̇gw =

1

10
m5/3ω11/3

gw .

This is the key formula for interpreting the observations of the

Hulse-Taylor binary pulsar system, PSR B1913+16. Its confir-

mation at the level of 1% by long-term radio timing of the pulsar

won Hulse and Taylor the Nobel Prize for Physics in 1993.

• Binaries as standard candles or standard sirens. Re-

markably, if we can measure the chirp rate ω̇gw, we can infer

from it the distance to the binary system (B F Schutz, Nature,

323, 310, 1986). It is very unusual in astronomy to be able to

observe a system and infer its distance; systems for which this is

possible are called “standard candles”, since basically one must

know their intrinsic luminosity and compare that with their ap-

parent brightness in order to measure the distance.

In the binary system we have studied, we can understand how

this works if we note that the amplitude of the radiated field

depends, as above, on m, R, and r. Since we can solve for R

in terms of the other variables, we can take the radiated field to
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depend on m, ωgw, and r. Since we measure ωgw, if in addition

we can measure the chirp rate then we can infer m. Then it

follows that when we also measure the amplitude of the waves

we can determine r, the distance to the binary. Essentially, the

chirp rate is a measure of the intrinsic luminosity of the system

(its frequency is changing because of the energy it loses), while

the observed amplitude is a measure of the apparent luminosity.

Because of the analogy with sound, gravitational wave astro-

physicists have begun calling chirping binaries “standard sirens”.

• More general binary systems.

– Our assumption of equal masses may seem restrictive, but

it actually is not. With unequal masses one replaces m by

something called the chirp mass M, formed from the re-

duced mass µ and the total mass M in the following way:

M = µ3/5M 2/5.

This combination appears in both the formula for ω̇gw and

for h, so that it is possible to infer distances from these obser-

vations even when the masses of the two stars are unequal.

This is a remarkable coincidence; it allows the method to

work even though a counting argument would suggest that

we do not have enough observables to determine all the un-

knowns about the system.

– Another assumption we made, for simplicity, is that the or-

bit is circular. Coalescing binary neutron stars and black

holes have probably evolved into circular orbits by the time

they coalesce, but stellar binaries observed by LISA may not

always be circular. The Hulse-Taylor binary pulsar is not

15



in a circular orbit. The eccentricity of an orbit brings the

stars closer together than they get in a circular orbit of the

same semi-major axis. Because the gravitational wave energy

emission is such a strong power of the velocity (see the factor

ω6 in the formula above), radiation is stronger in eccentric

orbits, and they shrink faster.

– We have only worked in Newtonian theory for the orbits.

Post-Newtonian orbit corrections will be very important in

observations. This might at first seem puzzling, since ground-

based detectors will have low signal-to-noise ratios for these

observations. But the key fact is that the corrections to the

orbital radiation have a cumulative effect on the waveform,

steadily changing its phase from what might be expected

from Newtonian orbits. If the phase of an orbit changes by

as much as π in the whole evolution (half an orbit) then the

template being used to search for the signal becomes useless.

Since observations will follow the orbital evolution of such

systems for thousands of orbits, very precise templates are

required. By measuring the post-Newtonian effects on an

orbit, one can measure the individual masses of the stars,

their spins, and possibly even their equations of state.

– Even more extreme are orbits of small black holes falling into

massive black holes, such as are seen in the centers of galax-

ies. Here one needs to solve the full relativistic orbit equa-

tion with corrections to the geodesic motion that are first-

order in the mass of the infalling object. This is a problem

that has not yet been completely solved, although progress

on it is very rapid indeed. It is key for LISA or any other

space-based detector. (When one says that one corrects the
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geodesic equation even for a freely falling black hole, that

does not mean we are abandoning the equivalence princi-

ple. We are finding corrections to the geodesic equation of

the background black hole; the infalling black hole follows

a geodesic of the time-dependent geometry which it helps

to create.) These systems are called Extreme Mass-Ratio

Inspiral Systems (EMRIs).

– The most difficult phase of the binary orbit is the merger

of the two objects. This must be calculated entirely nu-

merically. For many years the field of numerical relativity

painstakingly addressed the many problems and instabilities

associated with numerical integrations of the Einstein equa-

tions, and with the presence of causality boundaries (hori-

zons) in the numerical domain. About 5 years ago the last

piece of the puzzle was put into place, and since then many

groups around the world routinely produce accurate simu-

lations of the mergers of two black holes, and accurate pre-

dictions of the radiation emerging from the event and the

subsequent ringdown oscillations of the product black hole.

The frontiers of this research are: pushing to more unequal

mass ratios (5:1 is difficult); exploring the entire parameter

space of spins and masses; attaching waveform predictions

onto those from the post-Newtonian studies of the same sys-

tems before they enter the merger phase, so that detectors

have one unified waveform prediction to look for; performing

merger simulations for neutron stars with all the associated

new physics, like magnetic fields and neutrino transport.
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Expected science from Advanced Detectors

• Last year the LSC and VIRGO collaborations published their

best-estimate predictions of the rates of detections of binary sys-

tems to be expected when the Advanced LIGO and Advanced

VIRGO detectors reach their expected sensitivity and opera-

tional duty cycle [Class. Quant. Grav. 27, 173001 (2010),

arXiv:1003.2480]. All binaries that are in the detectable fre-

quency band (above 40 Hz) are orbiting so fast that they have

only at most a few seconds before gravitational wave energy

losses bring them together into a coalescence. While there are

big astrophysical uncertainties in the populations, the ”most-

likely” numbers are encouraging: the network could detect 40

coalescences of neutron stars with neutron stars each year, and

20 coalescences of black holes with black holes. The rates for

neutron stars with black holes are more uncertain but in the

same range. The neutron-star events probably will involve stars

with masses around 1.4 M�. The black holes in these events are

probably between 8 and 20 M�, but this range could go much

higher.

The neutron star coalescence population is estimated from ob-

served binary neutron stars in our Galaxy. Pulsar astronomers

now know about six such systems that are tightly enough bound

to coalesce within a Hubble time. Extrapolating the numbers

out to the detection range of Advanced Detectors gives the rate

of about 40 detectable events per year (at a signal-to-noise ratio

of 8 or more in at least one detector). The black hole popula-

tion is not so well related to observations, and the paper quoted

here simply relies on population synthesis models. Such systems
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evolve through binary evolution, in a way analogous to the way

the neutron star binaries evolve, but also are formed in globu-

lar clusters by three-body interactions occasionally resulting in

bound black-hole binaries. The black hole rate is comparable to

the neutron star rate because, although the population densities

are much smaller because we believe that black holes are rarer,

the systems are more massive and can therefore be detected in a

much larger volume. There are recent suggestions that the black

hole rate could be much higher, but these have not yet been

thoroughly tested by the community.

• Observation of 40 NS-NS events per year would bring a great deal

of astronomical and astrophysical information. A typical event

would determine the chirp mass of the system very accurately

and the individual masses to perhaps 20%. So we would soon

build up a large sample of accurately known neutron star masses.

Some information about spins might come from the data, but

this remains to be seen. Very interestingly, NS-NS mergers are

the leading candidate for the systems that create short hard

gamma-ray bursts. Because gamma-ray bursts are beamed, one

would not expect to associate a burst with each detection. But

perhaps one or two of the 40 per year would be associated with a

burst. And the other events might still be associated with some

kind of X-ray, optical, or radio activity, which would lead to the

identification of the host galaxy. One can hope, therefore, that a

good fraction of the 40 NS-NS events each year will be identified

to a particular galaxy. With that information, it will be possible

to measure the redshift of these events, and couple that with

the distance information provided by the GW signal itself. This

would allow an accurate measurement (to a few percent) of the
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local Hubble constant, i.e. the expansion of the Universe within

about 300 Mpc, which is about z = 0.05.

Observation of 20 BH-BH systems per year would provide us

with our first census of black hole masses and spins, and finally

provide observational data to constrain models of black hole for-

mation. Although we will not have counterparts in the electro-

magnetic spectrum, it will still be possible to find a value of the

Hubble constant from statistical methods, as I showed as long

ago as 1986. Recent simulations using realistic galaxy catalogues

show that we are likely to achieve values of the Hubble constant

accurate to a few percent after 10-20 NS-NS events even without

identifications (del Pozzo, arXiv:1108.1317), and similarly on a

larger distance scale with BH-BH mergers. This is comparable

to the best accuracy from other methods, but it has the great

advantage of having very different systematic errors.
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Expected science from space-based detectors
like LISA

Binary systems are even more important for LISA than for ground-

based detectors. While the details of the sensitivity of the mission

depends on the outcome of the ongoing LISA re-design, the capabil-

ities of the new detector will differ from those of LISA more in terms

of numbers of signals that can be detected rather than in the nature

of the sources.

Any space-based detector will register the waves from every binary

systems of compact objects in the Galaxy that is tight enough to

radiate in its frequency band. This amounts to tens or even hun-

dreds of thousands of systems, and most of them will be so closely

overlapping that they will blend into a confusion noise background.

But thousands might still be resolvable.

A space detector will also detect coalescences of massive black holes,

essentially throughout the universe and therefore back in time to

very high redshifts, say up to z = 10 or 15. The mass range from 104

to 107M� will provide an important window into the distribution

of black holes today, their formation history, and their relationship

to galaxy formation. By comparing the detected population with

synthetic population models based on theories of early black hole

formation and growth, a space-based detector will be able to dis-

criminate between models and provide our earliest evidence of how

the black holes that now inhabit galaxies like our own first formed.

(Sesana, et al, Phys.Rev.D83:044036, 2011)

The massive black hole mergers also can be used to measure cos-

mological parameters, in the same way in principle as we described

for NS-NS and BH-BH coalescences measured by LIGO an VIRGO.
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LISA would be able to measure the Hubble constant to fractions of

a percent, and the dark energy parameter w to a few percent, in

only one or two years of observing. A longer mission could lead to

a determination of the time-variation of w. (Petiteau, et al, Astro-

phys.J.732:82,2011)

However, the effectiveness of a space-based detector will depend on

the configuration that is launched. On the ground, the distance to a

source can be determined only once the other properties of the sig-

nal, such as its polarization and direction, are determined, and that

requires a network. LISA’s design also has such a network, because

it has a triangular array that returns three different gravitational

wave signals. But if the descoped mission is launched with only two

active arms, and only one gravitational wave measurement, then it

will not be able to determine polarization so easily and its ability to

determine cosmological parameters will be degraded.

A detector in space could detect a stochastic cosmological back-

ground of gravitational waves provided the noise was larger than the

noise in the detector. LISA would be able to reach an energy density

in gravitational waves of Ωgw ∼ 10−10 in the milliHertz frequency

range. This would be very interesting, because this frequency band

is where radiation from a 1 TeV electroweak phase transition would

be concentrated, if such a transition produced significant radiation.

But it does not reach the standard inflation value of around 10−15.

Partly because of this there has been discussion of much more sensi-

tive detectors in space. NASA’s concept study, called the Big Bang

Observer (BBO), would reach 10−15 by putting four LISA-like con-

stellations in orbit around the Sun, each with much more power-

ful lasers. This is not yet technically feasible, but the study shows

just how hard it will be to construct such a detector. Similarly, a
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Japanese proposal called DECIGO could, in its most sensitive form,

do the same thing.

But such missions could have another cosmological payoff. Besides

detecting an inflation-generated background, such missions would

inevitably detect every NS-NS binary in the universe that happens to

pass through its frequency band (many of these systems are already

orbiting tightly enough to coalesce within a few years or less). With

the sensitivity of these systems it would be possible to use these

binaries to measure the expansion rate of the universe at the time

they existed, perhaps at redshift 3 or more! This is because it would

be possible to measure the extra differential redshift placed on the

signal between its beginning and its termination a year or more later

(N Seto, S Kawamura, T Nakamura Phys. Rev. Lett., 87,221103,

2001). This would be another way of constraining dark energy in the

early universe!
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2

Download Lecture Notes

 You can find the lecture notes available for download at 

http://www.aei.mpg.de/~schutz/download/lectures/AzoresCosmology
 There are 4 files: an outline, and the three lectures.

http://www.aei.mpg.de/~schutz/download/lectures/AzoresCosmology


3

Testing Gravitational Wave 
Theory

 In 1993 Hulse and Taylor were awarded the Nobel Prize 
for the discovery and scientific exploitation of 
PSR1913+16.

 Now there are about 6 similar systems, and the 
spectacular “double pulsar” PSR J0737-3039 overtook 
1913 in precision before it became a single pulsar system 
again.

 Since the GW frequency is just slightly lower than the 
LISA waveband, LISA and LIGO should have confidence 
that the GWs they detect will not be too different from the 
GR prediction.
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Confirmation of GR

(Will LRR)

This is a parameter-
free confirmation. 
Perihelion shift, 
Shapiro delay, 
redshift by 
companion star 
determine all orbital 
parameters. GW 
energy loss is 
therefore a strong 
test.
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GW physics across the spectrum

810=
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A chirping system is a GW 
standard candle: if position
is known, distance can be 

inferred.
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Three Phases of BH Merger 
with Comparable Masses

Inspiral phase 
gives primary 
SNR for 
detecting 
signals, 
measuring 
masses.

Merger and 
ringdown 
contain extra 
spin 
information, 
plus final state.

Hybrid pN-Numrel 
waveforms 
used now in 
searches.

(Courtesy Kip Thorne)
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BH Merger Simulations

 Numerical relativity simulations are now producing 
accurate solutions of Einstein’s equations for a large 
variety of in-spiraling systems of black holes with 
spin. 

 Key physics question is how large is the “kick” that 
the remnant receives from the asymmetrically 
radiated GWs. Record is 2000 km/s, typical seems to 
be 100-400 km/s. Depends very sensitively on mass 
ratio and spin directions.

 Maximum final J limited to ~ 0.7 M2. If you have a BH 
with a higher J, it got there by accretion.



8

Listen to Binary Mergers

 Inspiral (no frequency 
conversion if M ~ 10 solar).

 EMRI: raised by 19 octaves 
to make it audible.

 The Universe as heard by 
LISA.
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