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The Quest for Scalar Fields

● The fields of Nature:
– Observed particles are described by Fermi spinors
– Gauge forces are described by boson vector fields
– Einstein gravity uses only a 2-tensor (the metric)
– Is there anything else (such as fundamental scalar fields)?

● Scalar fields have long been part of the standard model 
of particle physics (cf. the Higgs particle).

● Recent developments suggest that they could be equally 
important in astrophysics and cosmology.

● Yet neither side has so far produced definitive 
experimental or observational evidence for them...



  



  

Hints of New Physics
● Three firmly established facts that the standard model of 

particle physics can't explain:
– Neutrino masses: Key recent result in particle physics, needs new 

ad-hoc conservation law or phenomena beyond current framework.
– Dark matter: no SM object can account for the dark matter required 

by observations (baryons or massive neutrinos can't do it).
– Size of baryon asymmetry: A BAU mechanism does exist, but fails 

given the measured values of the parameters controlling it.
● Our confidence in the standard model that leads us to the 

expectation that there must be new physics beyond it.
● All have obvious astrophysical and cosmological 

implications!
● Progress in fundamental particle physics increasingly 

depends on progress in cosmology.



  

Scalar Fields in Cosmology

● Scalar fields play a key role in most paradigms of modern 
cosmology, yielding inter alia

– Exponential expansion of the early universe (inflation)
– Cosmological phase transitions & their relics (cosmic defects)
– Dynamical dark energy powering current acceleration phase
– Varying fundamental couplings

● Even more important than each of these paradigms 
is the fact that they don't occur alone: this will be 
crucial for future consistency tests!



  

Varying Fundamental Constants



  

 The Constants of Nature
● Nature is characterized by a set of physical laws and 

fundamental dimensionless couplings, which historically we 
have assumed to be spacetime-invariant

– For the former, this is a cornerstone of the scientific method
– For latter, a simplifying assumption without further justification

● These couplings determine the properties of atoms, cells, 
planets and the universe as a whole.

– If they vary, all the physics we know is incomplete
● Improved null results are important and useful; a detection 

would be revolutionary!
– Natural scale for cosmological evolution would be Hubble time, but 

current bounds are 6 orders of magnitude stronger
– Varying non-gravitational constants imply a violation of the Einstein 

Equivalence Principle, a 5th force of nature, etc



  

Classification

●  A useful classification is in [Lévy-Leblond 1979]
– Type A: Properties of particular physical objects, e.g. 

masses and moments of fundamental particles
– Type B: Characteristics of classes of physical phenomena, 

e.g. coupling constants
– Type C: Universal constants, e.g. speed of light, Planck 

constant
– Type D: Invisible constants, e.g. isotropy of space, 

equivalence of inertial and gravitational mass
– Type E: Constants indistinguishable from zero, e.g. mass 

of photon, neutrality of matter
● The classification of some constants changes with time, 

and  may be different in different theories!



  

The Role of Constants
● A completely unsolved issue: no 'theory of constants' exists! 

[Duff et al. 2002, Martins 2002]
● Asymptotic states?

– c: Limit velocity of massive particle in flat space-time
– G: Limit potential for mass not forming black hole in curved space-time
– h: Limit uncertainty (quantum of action)

● Convenient conversion factors?
– Can't be pushed arbitrarily far...

● Pointers to the emergence of new phenomena
● How many are fundamental? (The story so far: 3)
● Are they fixed by consistency conditions, or arbitrary?



  

Constants & Extra Dimensions
● Unification of fundamental forces requires additional 

space-time dimensions; in such models, true 
fundamental constants are defined in higher dimensions

● (3+1)D constants are effective quantities, typically 
related to the true constants via characteristic sizes of 
the extra dimensions

● Hence expect space-time variation of such effective 
coupling constants.

– Inter alia, a varying α is unavoidable in string theory
● Many simple examples exist, e.g. in

– Kaluza-Klein models [Chodos & Detweiler 1980, Marciano 1981]
– Superstring theories [Wu & Wang 1986]
– Brane worlds [Kiritsis 1999, Alexander 2000]



  

Dark Energy & Varying Couplings

● Universe dominated by component whose gravitational 
behavior is similar to that of a cosmological constant.

● Required cosmological constant value is so small that a 
dynamical scalar field is arguably more likely.

● Such a field must be slow-rolling (mandatory for p<0) 
and be dominating the dynamics around the present day.

● It follows [Carroll 1998] that couplings of this field 
lead to potentially observable long-range forces 
and time dependencies of the constants of nature.



  

To Couple or Not To Couple

● Any scalar field couples to gravity.
● Couples to nothing else if a global symmetry φ −−> φ + const. 

suppresses couplings to the rest of the Lagrangian.
– If so, only derivatives and derivative couplings survive.

● Quantum gravity effects don't respect global symmetries, 
and there's no unbroken global symmetries in string theory.

● Scalars in the theory will couple to the rest of the 
world (in any manner not prevented by symmetry 
principles).



  



  

Phys. Rev. 82, 554 (1951)



  

Counterfactual Universes
● If αEM were increased by 4% or αS reduced by 0.4% the 

carbon-12 resonance at 7.6 MeV (the Hoyle resonance) 
would not exist and the amount of carbon produced in 
stellar cores would be drastically reduced

– Similarly, a 4% decrease in αEM or a 0.4% increase in αS 
would see stellar production of oxygen greatly reduced

● If αS where larger by 4% or smaller by 10%, Helium-2 
(i.e. diprotons) would be stable; this would speed up 
nuclear fusion and greatly reduce stellar lifetimes

– Deuterium could not exist and therefore no carbon or 
oxygen would be produced at all

● If µ where much larger than its current value, no 
ordered molecular structures would exist



  

Constants from A to (almost) Z

● Atomic Clocks (also molecular, soon nuclear?)
● Big Bang Nucleosynthesis
● Clusters (soon at arXiv)
● Cosmic Microwave Background (cf. Eloisa's talk)
● Geophysics (Oklo, meteorites)
● New Methods (watch this space)
● Spectroscopy (cf. Paolo's talk)
● Strong Gravity (white dwarfs, neutron stars)
● ...and Various Consistency Tests



  

Atomic Clock Basics

● Clock = Oscillator  + Counter
● In an atomic clock, ticker is quantum-mechanical: a 

photon is absorbed by an atom's last electron, causing 
it to flip its spin and magnetic field

● Key ongoing developments include:
– Laser-cooled, atomic fountain clocks
– Clocks based on a single atom (as opposed to an ensemble)
– Optical clocks (THz, as opposed to GHz – microwave)
– Micro-gravity (use dedicated satellites or the ISS)
– Nuclear (229Th) clocks?
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Local Constraints & Expectations
● Key future experiments and 

expected improvements in 
orders of magnitude (note 
integration times small):

– ACES (French-Swiss project, at 
the  ISS, 2013): 1 o.m.

– µSCOPE (mostly a CNES 
satellite, 2012): 2 o.m.

– GG (Italian, ?): 3 o.m.?
– STEP (a joint ESA-[NASA] 

cryo-satellite, ?): 5 o.m.
● These apply both to various 

aspects of the EEP and 
(indirectly) to α

● Direct constraint by the 
NIST group [Rosenband et 
al. 2008] comparing single-
atom Al+ and Hg+ optical 
clocks over a period of a 
year yields       
d/dt (ln α) = (-1.6+2.3)x10-17/yr 

     

● Direct local constraints on 
m are significantly weaker: 
[Shelkovnikov et al. 2008] 
comparing molecular and 
Cs clocks over 2 years, find 
d/dt (ln µ) = (-3.8+5.6)x10-14/yr



  

The Oklo Reactor
● Natural nuclear reactor in Gabon, went off about 1.8 bn 

years ago (z~0.14); ran for 105 years in few-second bursts.
● Observable: Samarium abundance depletion (0.9->0.02), 

sensitive to neutron cross sections: resonance E~97.3meV, 
well below scale of nuclear physics.

● First MCNP analysis [Petrov et al. At. Energy 98:296, 2005, 
PRC74: 064610,2006] highlights shortcomings of previous 
studies, finds ∆α/α=(0.6+6.2)x10-8

● Independent analysis [Gould et al.                            
PRC74: 024607,2006] finds                  
∆α/α=(0.7+1.8)x10-8 

● Measurement not 'clean', naive                                   
assumptions on other quantities

● Effectively it's a constraint on αS



  

Measuring α from Quasars

Murphy



  

Measuring α from the CMB



  

α, µ and beyond
● In theories where a dynamical scalar field yields varying α, 

other gauge and Yukawa couplings are also expected to vary
– In GUTs the variation of α is related to that of Λ

QCD
, whence nucleon 

mass varies when measured in energy scale independent of QCD

– Expect a varying µ=m
p
/m

e
, which can be probed with H

2
 [Thompson 

1975] and other molecules.
● Wide range of possible α-µ relations makes this a unique 

discriminating tool between competing models.
● These observations measure the inertial masses, not the 

gravitational ones; they may or may not be probing µ...
– H

2
 measurements do probe m

p
/m

e

– For more complicated molecules, m
nuc

/m
e
~ few m

p
/m

e
, but beware 

other effects such as composition-dependent forces!

– Could ultimately constrain these couplings (H
2
 vs HD vs ...).



  

An Example

● For the MSSM embedded on a GUT                                         
                                                                                           
                      (d ln µ / dt) ~ R (d ln α/ dt)

● If α varies due to a varying unified coupling, R>0 (typically 
40); if due to varying unification scale, R<0 (typically -50)

● Can build say SU(5) models with any value of -500<R<600 
[Calmet & Fritzsch 2002]. |R| typically large: fine-tuning 
needed for |R|<1

● Large numbers arise simply because the strong coupling and 
the Higgs VEV run (exponentially) faster than α

● By probing α(z) and µ(z) we can  test GUT scenarios without 
needing to detect any GUT model particles at accelerators!



  

Was Einstein Right?



  

Dynamical Dark Energy

● Universe dominated by component whose gravitational 
behavior is similar to that of a cosmological constant.

● Required cosmological constant value is so small that a 
dynamical scalar field is arguably more likely.

● Standard methods (SNe, Lensing, etc) are of limited use as 
dark energy probes [Maor et al. 2001, Upadhye et al. 2005].

– Clear detection of varying w is key to convincing result, since w
0
~ -1

● Since the field is slow-rolling when dynamically important, a 
convincing detection of w(z) is tough at low z (even with 
EUCLID or WFIRST).



  

Dark Energy from Varying ConstantsDark Energy from Varying Constants
(or: I can tell you, but it will cost you 1M€)(or: I can tell you, but it will cost you 1M€)

with L. Amendola, A.C. Leite, N. Nunes, P. Pedrosa, G. Robbers



  

From α(z) and µ(z) to w(z)
● Scalar field yielding dark energy gives varying couplings 

which can be used to reconstruct w(z) [Nunes & Lidsey 
2004].

– Analogous to reconstructing the 1D potential for the classical motion 
of a particle, given its trajectory                                                      
                                                                                                    
                                                                                                    
                                                                                                   

● Will complement and extend traditional methods.
● Key Advantages:

– Distinguishes Λ from a dynamical field without false positives
– Huge z lever arm, probes otherwise inaccessible z range where field 

dynamics is expected to be fastest (deep matter era)
– Low-cost, ground-based (~100 good nights on VLT, Keck, LBT)
– We can start now!



  

Finding ζ
● From 1st derivatives of the data plus Ω

φ0
 and w

0
 from a 

different experiment (but uncertainty large near w~-1)         
                                                                                         
                                                                                         
                                                                                         

● Can use next equation in the hierarchy, so 2nd derivatives of 
the data must be calculated (will only work if not too noisy)   
                                                                                         
                                                                                         

● Equivalence Principle tests provide an upper bound (may 
soon provide a measurement); slow-roll yields lower bound

● We can simply assume a value motivated by some theory

● Comparing w
α
(z) and w

sn
(z) will allow low-z reconstruction of 

B
F
(φ) (testing the ansatz being used) and measuring ζ 



  

Current Data & Local Tests

● Is the Webb result compatible 
with atomic clock bounds?

– Comparison is model-dependent
● Adopt toy-model parametrization 

of the evolution to z~4
– Function of N = ln (a) = -ln(1+z)

● Sharp transition required at z~1
– Related to onset of dark energy 

domination?
– May leave little other imprints 

[Mortonson et al. 2009] 
● Atomic clocks bound is crucial!



  

A worked example

● Using PCA techniques [Huterer & Starkman 2003], and 
combining supernova & constants data.

● Two alternatives for deciding number of components
– Minimizing risk = bias^2 + variance
– Error normalization a la JDEM FoMSWG [Albrecht et al. 2009]

● Various scenarios for ESPRESSO & CODEX:
– Baseline: 30 (100) absorber measurements, each with an 

uncertainty of 6 x 10-7 (1 x 10-7)
– Ideal: 100 (150) absorber measurements, each with an 

uncertainty of 2 x 10-7 (3 x 10-8)
– Control: Normal distribution of the uncertainties
– For supernovas, we assume 3000 measurements, each with an 

uncertainty of 0.11 in the magnitude, up to z=1.7



  

This and the following 6 slides 
contain unpublished results, and 

will be made available later.



  

The Quest for Redundancy



  

The CMB Temperature

Noterdaeme et al.

● T(z)=T
0
(1+z)1-β, β=0 in standard model. Currently β<0.03



  

This slide contains unpublished 
results, and will be made 

available later.



  

So What's Your Point?
● Nothing is varying at ~ 10-5 level; this is already a very 

significant constraint (cf. the Cassini bound).
● The coming years will bring big gains in sensitivity and also 

dedicated experiments - but doing things right is tough!
– We'll get to 10-6 soon (PEPSI, ESPRESSO) and to 10-7 later
– Need customized observation procedures, laser frequency comb 

calibration, purpose-built data reduction pipelines, ...
– Need further astrophysical probes

● Keep in mind the dark energy lesson: it's clear that a 
detection will only be believed when there's redundancy

– Equivalence Principle tests
– Laboratory measurements, T(z), opacity, etc

● Varying constants are a powerful, versatile and low-cost way 
to probe fundamental physics and dark energy.
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