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Some concepts from
Dark Energy 
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1. Dark energy probes (not covered here yet)

2. Separating DE from Modified Gravity

3. Principal Components in cosmology

4. A few useful statistical methods in cosmology 
MCMC, Fisher matrix (and figures of merit)

My lecture roughly covers:
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Topic I: Discovery of the Accelerating Universe

Recommended reading:

• “Measurements of the cosmological parameters ΩM and Λ from 42 high-redshift super-

novae”, S. Perlmutter et al. (The Supernova Cosmology Project), Astrophysical Journal

517, 565 (1999) — a classic.

• “Supernovae, Dark Energy, and the Accelerating Universe”, S. Perlmutter, Physics Today,

April 2003 — very nice popular account.

• “Measuring Cosmology with Supernovae”, Saul Perlmutter and Brian P. Schmidt, Super-

novae & Gamma Ray Bursts, K. Weiler, Ed., Springer, Lecture Notes in Physics, astro-

ph/0303428 — intermediate level overview.

• “Improved Dark Energy Constraints from ∼ 100 New CfA Supernova Type Ia Light

Curves”, M. Hicken et al., arXiv:0901:4804 — one of latest and greatest SN Ia data sets.

• “Dark Energy and the Accelerating Universe”, J. Frieman, M. Turner and D. Huterer, Ann.

Rev. Astron. Astrophys. 46, 385 (2008)

(http://huterer8.physics.lsa.umich.edu/~huterer/Papers/ARAA_DE.pdf)
— a review of DE for a general-practice physicist or astronomer.

Introduction. Type Ia supernovae are interesting objects. They have been studied exten-

sively by the famous American-Swiss astronomer Fritz Zwicky (there is a notable paper by Baade

and Zwicky from 1934); Zwicky gave them their name. They have been known to have nearly

uniform luminosity; this feature is easily understood from the currently favored explanation for

the physics of these events: these are white dwarf stars accreting matter from a companion,

going over the Chandrasekhar limit, and undergoing explosion.

Explosions of type Ia supernovae are extremely luminous events that can be seen across the

observable universe. At their peak, SNe Ia can be as luminous as the entire galaxy in which they

reside.

Standard candles. It is very difficult to measure distances in astronomy. You can get red-

shift of an object from its spectrum, but how do you get the distance? There are many empirical

— and uncertain — ways to do so (surface brightness fluctuations, period-luminosity relation of

Cepheids, proper motions, etc). Typically, astronomers construct an unwieldy “distance ladder”

to measure distance to a distant galaxy: they use some of these relations (say, proper motions)

to calibrate distances to more nearby objects, then go from those objects to more distant ones

using other relations that work better in that distance regime. This procedure is clearly not

robust.

A “standard candle” is a hypothetical object that has a fixed luminosity (that is, fixed intrinsic

power that it radiates). Having a standard candle would be useful since then you could infer

distances from objects just by using the inverse square law, f = L/(4πd2), by measuring the flux

f and knowing the luminosity L from the standard candle property. In fact, you don’t even to

know the luminosity of the standard candle to be able to infer relative distances to objects – all

you need to know that thus luminosity is the same for all objects.
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Supernova Hubble diagram (binned)

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008
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Cosmological Probes of Dark Energy



Supernova Hubble diagram (binned)

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008



Measuring distance from SNe

DM ≡ m−M = 5 log10

�
dL

10pc

�

m = M + 5 log10(H0dL)− 5 log10 (H0 × 10pc)

m ≡ 5 log10(H0dL) +M

M ≡M − 5 log10

�
H0

Mpc−1

�
+ 25

⇒

⇒

Need to always fully marginalize over  M 
(may lose ~50% precision in cosmo parameters)

(nuisance
parameter)



Weak Gravitational Lensing

Key advantage: measures distribution of matter, not light

Credit: NASA, ESA and 
R. Massey (Caltech)

http://www.lsst.org
http://www.lsst.org
http://www.lsst.org
http://www.lsst.org


Weak Gravitational Lensing

Credit: Colombi & Mellier

http://www.lsst.org
http://www.lsst.org


Weak Lensing and Dark Energy

• Probes integrated 
matter density

• Also sensitive to 
Dark Energy 
through distance, 
volume factors

Refregier 2003
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WL measures integral over the line of sight:
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WL Angular power spectrum
(DES forecast)



Counting galaxy clusters
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CMB and Dark Energy
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Dependence on DE:
1. Peaks’ positions
2. ISW (low ell)
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CMB and Dark Energy
One linear combination of DE parameters is measured by the CMB
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40 Frieman, Turner & Huterer

Table 3: Dark energy projects proposed or under construction. Stage refers
to the DETF time-scale classification.

Survey Description Probes Stage

Ground-based:
ACT SZE, 6-m CL II
APEX SZE, 12-m CL II
SPT SZE, 10-m CL II
VST Optical imaging, 2.6-m BAO,CL,WL II
Pan-STARRS 1(4) Optical imaging, 1.8-m(×4) All II(III)
DES Optical imaging, 4-m All III
Hyper Suprime-Cam Optical imaging, 8-m WL,CL,BAO III
ALPACA Optical imaging, 8-m SN, BAO, CL III
LSST Optical imaging, 6.8-m All IV
AAT WiggleZ Spectroscopy, 4-m BAO II
HETDEX Spectroscopy, 9.2-m BAO III
PAU Multi-filter imaging, 2-3-m BAO III
SDSS BOSS Spectroscopy, 2.5-m BAO III
WFMOS Spectroscopy, 8-m BAO III
HSHS 21-cm radio telescope BAO III
SKA km2 radio telescope BAO, WL IV
Space-based:
JDEM Candidates

ADEPT Spectroscopy BAO, SN IV
DESTINY Grism spectrophotometry SN IV
SNAP Optical+NIR+spectro All IV

Proposed ESA Missions
DUNE Optical imaging WL, BAO, CL
SPACE Spectroscopy BAO
eROSITA X-ray CL

CMB Space Probe
Planck SZE CL

Beyond Einstein Probe
Constellation-X X-ray CL IV

8.2 Space-based surveys

Three of the proposed space projects are candidates for the Joint Dark Energy
Mission (JDEM), a joint mission of the U.S. Department of Energy (DOE) and
the NASA Beyond Einstein program, targeted at dark energy science. Super-
Nova/Acceleration Probe (SNAP) proposes to study dark energy using a dedi-
cated 2-m class telescope. With imaging in 9 optical and near-infrared passbands
and follow-up spectroscopy of supernovae, it is principally designed to probe SNe
Ia and weak lensing, taking advantage of the excellent optical image quality and
near-infrared transparency of a space-based platform. Fig. 17 gives an illustra-
tion of the statistical constraints that the proposed SNAP mission could achieve,
by combining SN and weak lensing observations with results from the Planck
CMB mission. This forecast makes use of the Fisher information matrix de-

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008



Systematics summary
38 Frieman, Turner & Huterer

Table 2: Comparison of dark energy probes.

Method Strengths Weaknesses Systematics

WL growth+geometric, CDM assumption image quality,
statistical power photo-z

SN purely geometric, standard candle evolution,
mature assumption dust

BAO largely geometric, large samples bias,
low systematics required non-linearity

CL growth+geometric, CDM assumption determining mass,
X-ray+SZ+optical selection function

8 DARK ENERGY PROJECTS

A diverse and ambitious set of projects to probe dark energy are in progress or
being planned. Here we provide a brief overview of the observational landscape.
With the exception of experiments at the LHC that might shed light on dark
energy through discoveries about supersymmetry or dark matter, all planned
experiments involve cosmological observations. Table 3 provides a representative
sampling, not a comprehensive listing, of projects that are currently proposed or
under construction and does not include experiments that have already reported
results. All of these projects share the common feature of surveying wide areas
to collect large samples of objects — galaxies, clusters, or supernovae.

The Dark Energy Task Force (DETF) report (Albrecht et al. 2006) classified
dark energy surveys into an approximate sequence: on-going projects, either
taking data or soon to be taking data, are Stage II; near-future, intermediate-scale
projects are Stage III; and larger-scale, longer-term future projects are designated
Stage IV. More advanced stages are in general expected to deliver tighter dark
energy constraints, which the DETF quantified using the w0-wa figure of merit
(FoM) discussed in the Appendix (§11.1). Stage III experiments are expected
to deliver a factor ∼ 3 − 5 improvement in the DETF FoM compared to the
combined Stage II results, while Stage IV experiments should improve the FoM
by roughly a factor of 10 compared to Stage II, though these estimates are only
indicative and are subject to considerable uncertainties in systematic errors (see
Fig. 16).

We divide our discussion into ground- and space-based surveys. Ground-based
projects are typically less expensive than their space-based counterparts and can
employ larger-aperture telescopes. The discovery of dark energy and many of the
subsequent observations to date have been dominated by ground-based telescopes.
On the other hand, HST (high-redshift SN observations), Chandra (X-ray clus-
ters), and WMAP CMB observations have played critical roles in probing dark
energy. While more challenging to execute, space-based surveys offer the advan-
tages of observations unhindered by weather and by the scattering, absorption,
and emission by the atmosphere, stable observing platforms free of time-changing
gravitational loading, and the ability to continuously observe away from the sun
and moon. They therefore have the potential for much improved control of sys-
tematic errors.

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008



Weak Lensing Experimental 
Systematics: redshift errors

Ma, Hu & Huterer 2006;   Huterer, Takada, Bernstein & Jain 2005
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Weak Lensing
Theory Systematics
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What if gravity 
deviates from GR?

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(

ρ +
3F (H)

8πG

)

For example:

Modified gravity Dark energy



ρDE(z) = ρDE,0 exp
�

3
� z

0
(1 + w(z�))d ln(1 + z�)

�
ρ̇ + 3H(p + ρ) = 0

Expansion History

Continuity equation:

Then can easily get expansion rate for a general w(z):

H
2(z) =

8πG

3
[ρM (z) + ρDE(z)]

= H
2
0

�
ΩM (1 + z)3 + ΩDE exp

�
3

� z

0
(1 + w(z�)) d ln(1 + z

�)
��

(Note:  Any arbitrary expansion history can be described by some w(z))

⇒



Growth of density perturbations
Linear growth of density fluctuations (δ≡δρ/ρ)

δ̈ + 2Hδ̇ − 4πGρMδ = 0
Rewrite in terms of growth relative to EdS, g(a)≡ D(a)/a

(δ(a)∝D(a) is ‘pure’ growth from Peebles book)

2
d2g

d ln a2
+ [5− 3w(a)ΩDE(a)]

dg

d ln a
+ 3 [1− w(a)] ΩDE(a)g = 0

Solving this equation for any arbitrary w(z) (or ΩDE(z))
gives you linear growth g(a) (or D(a))

Beware of special closed-form solutions for growth - 
they are valid only for specific values of w (-1, -1/3, 0)



•In standard GR, expansion history determines distances 
and growth of structure

•So check if this is true by measuring separately

δ̈ + 2Hδ̇ − 4πρMδ = 0

Distances
(a.k.a. kinematic probes)

Growth
(a.k.a. dynamical probes)

How to “detect” Modified Gravity

Are they mutually consistent? (given GR)



Principal Components:
asking the data what it measures 



Principal Components of w(z)

Huterer & Starkman 2003

•  Shows where sensitivity of any given survey is greatest
•  Used by various authors to study optimization of surveys
•  Used to make model-(in)dependent statements about DE 
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FIG. 3: Eigenmodes. (a) 5 best (decreasing eigenvalue thick
to thin) constrained eigenmodes or linear combinations of ion-
ization history. (b) 5 worst constrained eigenmodes.

of fiducial model, the linear response approximation can
provide useful tools for representing the data. A detailed
consideration is beyond the scope of this work. Instead
we will show that a modification of the forward approach
suffices to extract essentially all of the information in the
CMB.

III. CMB OBSERVABLES

To better quantify the information contained in the
power spectrum, let us consider the ultimate limit of an
all-sky experiment that is cosmic variance limited. The
variance of the power spectrum is then given by

〈

δCEE
! δCEE

!′
〉

=
2

2" + 1
(CEE

l )2δ!!′ (3)

and hence the covariance of the ionization parameters
〈δx(zi)δx(zj)〉 ≈ (F−1)ij , where

Fij =
∑

!

(" + 1/2)T!iT!j (4)

is the Fisher matrix. The structure of the transfer matrix
implies a large covariance between estimates of δx(zi)
and renders the delta-function representation difficult to
visualize.

Consider instead the principal component representa-
tion based on the orthonormal eigenvectors of the Fisher
matrix, decomposed as

Fij =
∑

µ

Siµσ−2
µ Sjµ . (5)

For a fixed µ, the Siµ specify linear combinations of the
δx(zi) for a new representation of the data

mµ =
∑

i

Siµδxi , (6)
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FIG. 4: Eigenmode statistics. Top curve: rms error σµ on
mode amplitude; dashed line represents a physicality prior on
x; only the first 5 modes contain interesting information. Bot-
tom curve: optical depth per unit-amplitude mode τµ. Middle
curve: rms error on total optical depth shown as the cumula-
tive contribution from modes ≤ µ; dashed line represents the
physicality prior on x.

where the covariance matrix of the mode amplitudes is
given by

〈mµmν〉 = σ2
µδµν . (7)

In other words, the eigenvectors form a new basis that
is complete and yields uncorrelated measurements with
variance given by the inverse eigenvalue. The largest
eigenvalues correspond to the minimum variance direc-
tions and the first 5 are shown in the upper panel of
Fig. 3. The first two correspond essentially to the aver-
age ionization at high redshift and low redshift respec-
tively. The lower panel shows the directions with the 5
highest variances. Here neighboring delta modes with
similar responses compensate each other to leave the ob-
servable power spectrum unchanged. The rms of each
mode is shown in Fig. 4. Because the ionization fraction
cannot be negative and the amplitude of each mode is
∼ 0.5, only the first 5 modes with σµ ! 1 have useful in-
formation. An added benefit of the principal component
representation is that the structure in the lowest modes
is invariant under refinement of the binning scheme ∆z.
In " space, the first mode controls the high " power, the
second the low " power and the third through fifth adjust
the ringing in the spectrum.

These eigenmodes provide a good meeting ground be-
tween observations and models. The amplitude mµ of
these 5 best modes may be added to the usual CMB pa-
rameter estimation chain and the results compared to
model predictions for mµ without significant loss of in-
formation. As an example, in Figure 5 we have repre-
sented a complex ionization history (inset, thick-dashed)
through its first 1 through 5 eigenmodes. For this ioniza-
tion history the first 3 eigenmodes suffice to recover the
observable power spectrum. The temperature polariza-

Hu & Holder 2003

PCs for reionization 
(ie. of ionization fraction xe(z))



2

Fig. 1.— Marginalized 2D 68% and 95% CL contours for the optical depth to reionization (τ) and the amplitudes of the 5 lowest-variance
principal components of xe(z) (mµ, µ = 1−5). Panels along the diagonals show the 1D posterior probability distributions. Constraints are
plotted for both 3-year (red dotted lines) and 5-year (blue shading, solid lines) WMAP data. In the left plot, only the low-" reionization
peak in the E-mode polarization power spectrum is used for parameter constraints, and all parameters besides the 5 PC amplitudes and τ
are held fixed. For the constraints in the right plot, we use both temperature and polarization data and allow five additional parameters to
vary: Ωbh

2, Ωch2, θA, As, and ns. The plot boundaries for the PC amplitudes correspond to physicality priors that exclude models that
are unable to satisfy 0 ≤ xe ≤ 1 for any combination of the higher-variance (µ ≥ 6) PCs.

effects of reionization on large-scale CMB polarization,
so we obtain a very general parametrization of the reion-
ization history at the expense of only a few additional
parameters.

The principal components are defined over a limited
range in redshift, zmin < z < zmax, with xe = 0 at
z > zmax and xe = 1 at z < zmin. We take zmin = 6,
since the absence of Gunn-Peterson absorption in the
spectra of quasars at z ! 6 indicates that the universe is
nearly fully ionized at lower redshifts (Fan et al. 2006).
In the MCMC analysis presented here, we always use the
five lowest-variance principal components of xe(z) with
zmax = 30, constructed around a constant fiducial model
of xfid

e (z) = 0.15. The amplitudes of these components
then serve to parametrize general reionization histories
in the analysis of CMB polarization data. We refer the
reader to Mortonson & Hu (2008a) for further discussion
of these choices and the demonstration that five compo-
nents suffice to describe the E-mode spectrum to better
than cosmic variance precision.

We impose priors on the principal component ampli-
tudes corresponding to physical values of the ionized frac-
tion, 0 ≤ xe ≤ 1, according to the conservative approach
of Mortonson & Hu (2008a). All excluded models are
unphysical, but the models we retain are not necessarily
strictly physical. Finally, we neglect helium reionization,
which is a small correction at the current level of preci-
sion but will be more important for future analyses (e.g.,
Colombo & Pierpaoli 2008).

3. OPTICAL DEPTH CONSTRAINTS

We examine the implications of the WMAP 5-year
data for general models of reionization parametrized by
principal components using a Markov Chain Monte Carlo
analysis that mirrors our previous study of the 3-year

data in Mortonson & Hu (2008a). We consider con-
straints from either large-scale polarization alone, with
parameters that do not directly affect reionization fixed
to values that fit the temperature data (“EE”), or from
the full set of temperature and polarization data, varying
the parameters of the “vanilla” ΛCDM model (baryon
density Ωbh2, cold dark matter density Ωch2, acous-
tic scale θA, scalar amplitude As, and scalar spectral
tilt ns) in addition to the reionization PC amplitudes
(“TT+TE+EE”). In both cases, the total optical depth
to reionization, τ , is a derived parameter.

The MCMC constraints on principal component am-
plitudes and the derived optical depth for both of these
cases are plotted in Fig. 1, along with the previous
constraints from 3-year WMAP data (Mortonson & Hu
2008a). While there are some improvements in all 5 of
the individual components when considering EE alone,
these changes are not as large as the improvement in the
optical depth constraint when all of the data are consid-
ered. Adding both temperature data and extra parame-
ters in going from EE only to TT+TE+EE has the net
effect of slightly strengthening constraints on the higher
ranked PC amplitudes, although there is very little ef-
fect on τ . The additional constraining power for both
3-year and 5-year data comes mainly from the measured
temperature power spectrum at # ∼ 10 − 100, which ex-
cludes models with additional Doppler effect contribu-
tions due to narrow features in the ionization history
(Mortonson & Hu 2008a).

Modeling reionization as an instantaneous transition at
some redshift zreion, Dunkley et al. (2008) estimate the
optical depth from the 5-year WMAP data to be τ =
0.087±0.017, almost a factor of two more precise than the
estimate from three years of data (Spergel et al. 2007).



Figure 3: The first three, and the last (10th), principal component of fNL(k). The PCs, e(i)(k), are
basically eigenvectors of the covariance matrix for piecewise-constant values of fNL(k) in wavenum-
ber bins uniformly distributed in log k, and are ordered from the best-measured one (i = 0), to
the worst-measured one (i = 9) for the assumed fiducial survey. [Kenji: Check the shape doesn’t
change by including more bins. My worry is it changes by including 15 bins instead of 10 bins. It
means 10 bins are not enough! This figure could be put in the earlier section because this fig is a
sort of important to illustrate the properties of our PCs.]

5.2 Principal components and relation to local and equilateral models

[Kenji: what’s the punchline of this subsection? What is the conclusion of this section
important for? maybe we could put it in the discussion section by changing the title of the
next section to something like ’Discussion and Conclusion’?] [Dragan: Seems that PCs
and cosines are some quantitative results in the paper, so I would put them in a separate
section (like this one) before D&C. I wrote an intro par here to motivate the PCs, which
basically tell you what you measure. See comment below for the cosines result.]

[Dragan: (new par).] We now represent a general function fNL(k) in terms of principal
components (PCs). This decomposition is very convenient, as it tells us which particular
modes of fNL(k) are best or worst measured. The PCs will also enable us to measure
the overlap of our non-Gaussianity as specified by our generalized ansatz to the local and
equilateral forms of non-Gaussianity.

It is rather straightforward to start from the covariance matrix for the piecewise con-
stant parameters f i

NL and obtain the principal components (PCs) of fNL(k). The PCs are

– 12 –

Principal Components of fNL(k)

Best-measured 
fNL(k) mode

2nd-best measured...

3rd-best measured...

worst-measured 
mode

wavenumber k

Becker, Huterer & Kadota 2011

.......



1. Bin function, say w(z), in piecewise constant 
parameters, wi

2. Use data to constraint these parameters

3. Marginalizing over all non-w(z) parameters, 
get the NxN covariance matrix of wi, call it C

4. Diagonalize it: C-1 = WT Λ W

5. Rows of WT are the eigenvectors - the PCs!

6. Elements of Λ give how well these PCs are 
measured: σi = λi

−1/2

So how do you calculate the PCs?



You can study e.g. how many PCs can 
you measure better than accuracy X
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Bayesian probability interprets the concept of probability as a 
measure of a state of knowledge, and not as a frequency. 

One of the crucial features of the Bayesian view is that a 
probability can be assigned to a hypothesis, which is not 
possible under the frequentist view, where a hypothesis can 
only be rejected or not rejected. 

Bayesian statistics



P (M |D) =
P (D|M) P (M)

P (D)

Bayes’ theorem 
(D=data, M=model)

Posterior 
probability:

model given data

Likelihood
(data given model)

Prior probability
(of models)

Probability of data
(usually constant)



Say we have measurements of H0=(72±8) kms/Mpc.
What would the two statisticians say?

•The posterior distribution for H0 has 68% of its integral 
between 64 and 80 km/s/Mpc. 
•The posterior can be used as a prior on a new application 
of Bayes' theorem.

1. Bayesian:

Bayesian vs. Frequentist: Example 1



Say we have measurements of H0=(72±8) kms/Mpc.
What would the two statisticians say?

•Performing the same procedure will cover the real value of 
H0 within the limits 68% of the time. 
•But how do I repeat the same procedure (generate a new 
H_0 out of the underlying model) if I only have one 
Universe?

2. Frequentist:

Bayesian vs. Frequentist: Example 1



Say I would like to measure ΩM and ΩΛ  from SN data. 
What would the two statisticians do?

•Take some prior (say, uniform prior in both ΩM and ΩΛ ). 

• Then, for each model M=(ΩM, ΩΛ) compute the likelihood 
of the data, P(D|M) using, for example, the χ2 statistics
•Obtain the posterior probability on the two parameters   
using Bayes' theorem: 

1. Bayesian:

P(M|D) ∝ P(D|M) P(M)

Bayesian vs. Frequentist: Example 2



Say I would like to measure ΩM and ΩΛ  from SN data. 
What would the two statisticians do?

•Calibrate your statistic: for each model within the range you 
are exploring, generate  many realizations of data with that 
underlying model. Each realization of the data (points, and 
errors) gives you a χ2. 

•Histogram χ2 to calibrate the likelihood. 

•Now calculate the χ2 statistic for the real data, assuming the 
same model, and compare to the histogram - this will give you 
a (relative) likelihood for that model. 

•Repeat for each model M=(ΩM, ΩΛ)

2. Frequentist:
Feldman & Cousins, PRD, 1997

Bayesian vs. Frequentist: Example 2



Statistics: philosophy 

•When data are informative, Bayesian and frequentist 
approach will give very similar results

•But when data are ‘weak’, the two will generally differ

•No ‘right answer’ as to which one is better

•Given that we have 1 universe and cannot get arbitrary 
amount of data, Bayesian approach seems more 
appropriate

•In particular, Bayesian enables answering questions 
about model selection (e.g. is a dark energy model with w(z) a 
better fit to the data than w=const) A

•Also Bayesian enables easily adding new information 
(new data)

e.g. Trotta, arXiv:0804:4089
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Avoiding the grid:
Markov chain Monte Carlo 

(MCMC)

•Say we’d like to constraint cosmological parameters 
using some CMB or LSS data

•We have ~10 parameters; say we consider 20 values in 
each parameter to get smooth contours

•→ 2010 (∼ 1013) parameter combinations

•CAMB and WMAP likelihood take seconds to run per 
model → a total of 100 million years CPU time

•A better strategy of the likelihood exploration is needed!



Markov chain Monte Carlo (MCMC)

•MCMC: A method invented at Los Alamos lab in the 
1950s by physicists

•Instead of mapping out the likelihood, try sampling 
from the likelihood

• Metropolis-Hastings algorithm: 
•given the parameter set at some step t, xt, draw the next 
step xt+1 from some given proposal density Q(xt+1| xt )

•Now draw a random number α = U[0, 1]

•If α < P(xt+1)/ P(xt ), xt → xt+1 *

•If α > P(xt+1)/ P(xt ), xt → xt   (and repeat)

*Corollary: if P(xt+1) > P(xt ), you always move to the proposed parameter value





ΩM w ... f(ΩM,w,...) ... L

1 0.334 -1.023 ... 2.53 ... 5.3

2 0.285 -0.988 ... 3.13 ... 4.8

3 0.285 -0.988 ... 3.13 ... 4.8

4 0.285 -0.988 ... 3.13 ... 4.8

5 0.222 -1.130 ... 2.82 ... 4.2

...

100,000 ... ... ... ... ... ...

A typical chain

move

move

Likelihood(model) ∝ number of ‘stays’ at that model



Observational bounds on the cosmic radiation density 11

Figure 1. The 1D marginal (red/solid) and profile (blue/dotted) posteriors with
respect to Neff for our minimal model, the data set WMAP+SDSS-DR2-lin and top
hat prior 0.2 ≤ h ≤ 2.0. The shaded regions are, from top to bottom, the Bayesian
68% central credible interval, the 68% minimum credible interval, and the 1σ interval
derived from maximisation. The dashed vertical lines mark, from top to bottom,
the posterior mean 〈Neff〉, the 1D marginal posterior mode N̂

(1)
eff , and the global

best fit N̂eff .

“compressed.” It is common to map the posterior probability P (θ|x) onto a lower-

dimensional subspace by the process of marginalisation,

P (n)
marge(θ

(n)) ∝
∫

dθn+1 . . . dθN P (θ|x), (5.5)

where θ(n) = (θ1, . . . , θn) represents the parameters in the n-dimensional subspace.

Point estimates for θ(n) and credible regions may then be constructed from the marginal

posterior probability in analogy to section 5.3 above.

Marginalisation favours regions of parameter space that contain a large volume
of the probability density in the marginalised directions. This “volume effect” can

sometimes lead to counter-intuitive results, such as suppression of the probability density

for the global best fit parameters θ̂ if they appear within sharp peaks or ridges that

contain little volume. Moreover, the concept of volume itself depends on the choice

Hamann, Hannestad, Raffelt & Wong 2007

Beware: choice of quoting constraints is not unique!

Central Credible Interval:
same probability in

[−∞, plow] and [phigh, +∞]

⇒ GetDist outputs this!

Minimum Credible Interval:
places [plow, phigh]
around the peak

⇒ Guarantees enclosing peak of L!
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Fisher Information Matrix

Fij =
�
−∂2 lnL

∂pi∂pj

�

Cramér-Rao inequality: 
best errors you can achieve in cosmological parameters are

σ(pi) ≥






�
(F−1)ii (marginalized)

1/
√

Fii (unmarginalized)

Fisher matrix can be rewritten as 
(Tegmark Taylor & Heavens 1997)

Fij =
1
2
Tr[C−1C,iC

−1C,j ] + d̄T
,i C−1d̄,j

data
covariance 

of data

(minus) Hessian 
of likelihood

For derivation, see e.g. Durrer’s CMB book



Fisher Matrix: examples

F SNe
ij =

NSNe�

n=1

1
σ2

m

∂m(zn)
∂pi

∂m(zn)
∂pj

SN Ia: observable is magnitude m(z)

Cluster counts: observable is O(z) (say X-ray or SZ flux etc)

F
clus
ij =

Q�

k=1

Nk

σO(zk)2
∂O(zk)

∂θi

∂O(zk)
∂θj

Weak lensing power spectrum: observable is tomographic 
power spectrum Cab(l)

FWL
ij =

�

�

∂C
∂pi

Cov−1 ∂C
∂pj



p1

p2

2σ(p1)

2σ(p2)

68% contour

F11p
2
1 + 2F12p1p2 + F22p

2
2 = χ2

Equation of Fisher ellipse:
χ2=2.3 (68%)
χ2=6.1 (95%)



Fisher Matrix: facts

•Extremely useful tool for forecasting errors (and also 
Figures of Merit, in defining PCs, in the quadratic estimator method, etc)

•Easy to calculate: - only need one calculation of the 
observables for the fiducial model, and its derivatives wrt 
cosmological parameters

•Assumes that the likelihood (in parameters) is 
Gaussian: good approximation near the peak of likelihood (i.e. 
when the parameter errors are small)



Marginalizing over parameters with Fisher

1. Calculate the full N × N Fisher matrix F
2. Invert it to get F-1

3. Take the desired M × M subset of F-1, and call it G-1; note 
that this matrix is M dimensional
4. Invert G-1 to get G

And voilà -the matrix G is the projected Fisher matrix onto the
M-dimensional space

Say you have N, cosmological parameters. 
How do you marginalize over N-M of them to be left with a

desired joint constraints on M parameters?



Bias in parameters using Fisher matrix
Say you have biases (say, systematic errors) in observables. 

How do you calculate the resulting bias 
in cosmological parameters pi?

Easily! Can derive formula from first principles.

Weak lensing example:

SN Ia example:

δpi = F−1
ij

�

�

�
Cκ

α(�)− C̄κ
α(�)

�
Cov−1

�
C̄κ

α(�), C̄κ
β (�)

� ∂C̄κ
β (�)

∂pj

δpi = F−1
ij

�

n

1
σ2

m

[m(zn)− m̄(zn)]
∂m̄(zn)

∂pj



Figures of Merit (FoMs)

w0

wa 95% C.L.

The most common choice:
inverse area of the (95%) ellipse in the w0-wa plane

Or, simply:

FoM ≡ 1
σwpivot × σwa

FoM ≡ (detCw0wa)
−1/2 ≈ 6.17π

A95

Huterer & Turner 2001;  Albrecht et al 2006 (DETF report)



Future/current ratio

FoM(PC)
n ≡

�
detCn

detC(prior)
n

�−1/2

Mortonson, Huterer & Hu  2010

FoM with principal components



Azores Cosmology School 2011 Dragan Huterer, University of Michigan

Topic I: Discovery of the Accelerating Universe

Recommended reading:

• “Measurements of the cosmological parameters ΩM and Λ from 42 high-redshift super-
novae”, S. Perlmutter et al. (The Supernova Cosmology Project), Astrophysical Journal
517, 565 (1999) — a classic.

• “Supernovae, Dark Energy, and the Accelerating Universe”, S. Perlmutter, Physics Today,
April 2003 — very nice popular account.

• “Measuring Cosmology with Supernovae”, Saul Perlmutter and Brian P. Schmidt, Super-
novae & Gamma Ray Bursts, K. Weiler, Ed., Springer, Lecture Notes in Physics, astro-
ph/0303428 — intermediate level overview.

• “Improved Dark Energy Constraints from ∼ 100 New CfA Supernova Type Ia Light
Curves”, M. Hicken et al., arXiv:0901:4804 — one of latest and greatest SN Ia data sets.

• “Dark Energy and the Accelerating Universe”, J. Frieman, M. Turner and D. Huterer, Ann.
Rev. Astron. Astrophys. 46, 385 (2008)
(http://huterer8.physics.lsa.umich.edu/~huterer/Papers/ARAA_DE.pdf)
— a review of DE for a general-practice physicist or astronomer.

Introduction. Type Ia supernovae are interesting objects. They have been studied exten-
sively by the famous American-Swiss astronomer Fritz Zwicky (there is a notable paper by Baade
and Zwicky from 1934); Zwicky gave them their name. They have been known to have nearly
uniform luminosity; this feature is easily understood from the currently favored explanation for
the physics of these events: these are white dwarf stars accreting matter from a companion,
going over the Chandrasekhar limit, and undergoing explosion.

Explosions of type Ia supernovae are extremely luminous events that can be seen across the
observable universe. At their peak, SNe Ia can be as luminous as the entire galaxy in which they
reside.

Standard candles. It is very difficult to measure distances in astronomy. You can get red-
shift of an object from its spectrum, but how do you get the distance? There are many empirical
— and uncertain — ways to do so (surface brightness fluctuations, period-luminosity relation of
Cepheids, proper motions, etc). Typically, astronomers construct an unwieldy “distance ladder”
to measure distance to a distant galaxy: they use some of these relations (say, proper motions)
to calibrate distances to more nearby objects, then go from those objects to more distant ones
using other relations that work better in that distance regime. This procedure is clearly not
robust.

A “standard candle” is a hypothetical object that has a fixed luminosity (that is, fixed intrinsic
power that it radiates). Having a standard candle would be useful since then you could infer
distances from objects just by using the inverse square law, f = L/(4πd2), by measuring the flux
f and knowing the luminosity L from the standard candle property. In fact, you don’t even to
know the luminosity of the standard candle to be able to infer relative distances to objects – all
you need to know that thus luminosity is the same for all objects.
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The fact that SNe Ia can potentially be used as a standard candle has been realized long
ago (at least as far back as the 1970, as far as I know). Briefly, SNe Ia are extremely bright
explosions that are presumed to be cases when a white dwarf accretes matter from a (binary)
companion, and exceeds the Chandrasekhar mass limit and explodes. These SN type is defined
by the absence of Hydrogen in their spectra, but the unmistakable presence of a Silicon line at
6150 Angstroms.

Finding SNe. However, a real problem was scheduling telescopes to detect and “follow-up”
SNe that are discovered. Basically, if you point a telescope at a galaxy and wait for the SN to
go off, you will wait an average of 500 years. There has been a program in the 1980s to do that
(Norgaard-Nielsen, 1989) and it discovered only one SN, and after the peak!

A real breakthrough came in the 1990s when two teams of SN researchers, Supernova Cos-
mology Project (SCP; lead by Saul Perlmutter) and High-z Supernova Team (Highz; lead, at the
time, by Brian Schmidt) made careful use of world’s most powerful telescope working in concert
to discover and follow up SNe, essentially guaranteeing to funding agencies that they will find
batches of SNe in each run.

Some of the early results came out in 1997, which paradoxically indicated that the universe is
matter-dominated and consistent with being flat. But those early measurements were based on
only 7 high-z SNe and had large errors. The definitive results came out in 1998 (High-z team)
and 1999 (SCP, though they had results earlier) and indicated that the universe is dominated
by a component with negative pressure.

Broader is brighter. Another major breakthrough came in 1993 by Mark Phillips (as-
tronomer working in Chile). He noticed that the intrinsic SN brightness (or, SN luminosity)
is correlated with the decay time of SN light curve. Phillips considered the following quantity:
∆m15, the decay of the light curve 15 days after the maximum. He found that ∆m15 is strongly
correlated with the intrinsic brightness of SNe. In other words, he found the “Phillips relation”
which roughly goes as

Broader is brighter.

(see left panel of Fig. 1). Phillips found that the intrinsic dispersion of SNe, which is ∼ 0.5 mag-
nitudes (depending on which band you look at, etc), can be brought down to ∼ 0.2 magnitudes
once you correct each SN luminosity by this relation, using of course its measured ∆m15. In
astronomers’ language, the Phillips relation is

Mmax = a+ b (∆m15) (1)

where mmax is the absolute magnitude of SN, a and b are some constants, and the dispersion in
this relation around the mean is small as mentioned above.

The Phillips relation was the second key breakthrough that enabled SNe Ia to achieve preci-
sion needed to probe dark energy.

Observable and inferred quantities with SNe Ia. The astronomers use apparent mag-
nitudes to measure apparent (measured) brightness of an object. The difference between the
apparent and absolute magnitude is the distance modulus. In particular,

DM ≡ m−M = 5 log10

(
dL

10 pc

)
(2)
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Figure 1: Left panel: Phillips relation, from his 1993 paper. The (apparent) magnitude of type Ia
supernovae is correlated with ∆m15, the decay of the light curve 15 days after the maximum. Right
panel: light curves of a sample of SNe Ia before correction for the Phillips relation (top), and after
(bottom).

where dL is the luminosity distance

dL = (1 + z)
H−1

0√
|ΩK |

sinn

[
√
|ΩK |

∫ z

0

dz′√
ΩM(1 + z′)3 + ΩDE(1 + z′)3(1+w) + ΩR(1 + z′)4

]
(3)

where sinn(x) is equal to sin(x) (closed universe; ΩK > 0) or sinh(x) (open universe; ΩK < 0)
or just x for a flat universe with ΩK = 0.

This equation can be re-written as

m = M + 5 log10(H0dL)− 5 log10 (H0 × 10 pc) (4)

or
m ≡ 5 log10(H0dL) +M (5)

where the ”script-M” factor is defined as

M≡M − 5 log10

(
H0

Mpc−1

)
+ 25. (6)

Note thatM is a dummy parameter that captures two uncertain quantities: the absolute magni-
tude (i.e. intrinsic luminosity) of a supernova, M , and the Hubble constant H0. We typically do
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Figure 2: Left panel: combined Hubble diagram data from both SN teams, circa 2003. Right panel:
constraints on ΩM and ΩΛ from all SN data, circa 2008.

not knowM, and we need to marginalize (i.e. integrate) over this parameter in the cosmological
analysis.

The situation is now clear: astronomers measure m, which could be peak magnitude of a SN
Ia. Then they measure the redshift of a SN. With a bunch of SNe, they can marginalize over
the parameterM and be left with, effectively, measurements of luminosity distance vs. redshift.
A plot of either m(z) or dL(z) is called Hubble diagram.

The discovery of dark energy. Two aforementioned teams, the Highz team and the SCP,
published their findings in 1998 and 1999 respectively (the SCP team was a year late since they
were notoriously slow with getting papers out; in fact the discoveries had been made around the
same time). The results agreed and indicated that more distant SNe are dimmer than would be
expected in a matter-only universe. In other words, the universe is speeding up its expansion.
This was a watershed event in modern cosmology, and these two papers are among the most
cited physics papers ever.

These results have been greatly strengthened since, with many hundreds of SNe Ia currently
indicating same results, but with smaller errors, as in the original 1998-9 papers. Meanwhile,
other cosmological probes have come in with results confirming the SN results (see the right
panel of Fig. 2).

Systematic errors. There are many systematic errors that can creep up in SN observations.
At their most pernicious, these systematics may be a cause of the apparent acceleration of the
universe (that is, dimming of distant SNe). More generally, they stand in the way of making
SNe Ia a more precise tool of cosmology. Here we list a few prominent sources of error, and ways
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in which they are controlled:

• Extinction: there is dust between SN and dust (remember, some of them are thousands
of Mpc away!); is it possible that they appear dimmer simply because of extinction and
not dark energy? Well, there are ways to control (and correct for) extinction, basically by
looking at SNe in different colors. But also, if extinction were to be responsible for the
appearance of dimming, then you’d expect more distant SNe to dim more, without limit.
In fact, a “turnover” in the SN Hubble diagram has been observed - basically a signature
of universe being matter dominated at high z. This turnover cannot easily be explained by
extinction.

• Evolution: is it possible that SNe evolve, so that you are seeing a different population at
higher redshift that simply is intrinsically dimmer (violating the assumption of a standard
candle)? Well, SNe Ia do not own a “cosmic clock” by which they say “oops, 5 billion years
from Big Bang, time to get brighter”. Rather, they respond to their local environment, in
addition to being ruled by physics of accretion/explosion. So, by observing various signa-
ture, in particular in SN spectra, researchers can identify local environmental conditions,
and even go so far to compare only like-to-like SNe (resulting, potentially, in several Hub-
ble diagrams, one for each subspecies). First such divisions have been made recently, and
indicate that DE results are insensitive to what subspecies of SNe is used to obtain them.

• Typing: is it possible that non-Ia supernovae have crept in the samples used for dark energy
analysis? Well this question is easy to answer: type Ia supernova possess a characteristic
Silicon 6150 angstrom line (in rest frame), and this line, and a few others, are telltale signs
of SNe Ia. This question, however, becomes more relevant for SN surveys which cannot
afford to take spectra of all SNe (for example the LSST for most of their SNe, or the Dark
Energy Survey for 75% of their SNe). Then one must exercise a lot of care in studying the
light curves and trying to establish whether or not a given SN is SN Ia.

• K-corrections: As SNe Ia are observed at larger and larger redshifts, their light is shifted
to longer wavelengths. Since astronomical observations are normally made in fixed band
passes on Earth, corrections need to be applied to account for the differences caused by the
spectrum shifting within these band passes. These corrections take the form of integrating
the spectrum of an SN over the relevant band passes, shifting the SN spectrum to the
correct redshift, and re-integrating.

• Gravitational lensing: distant SNe are gravitationally lensed by matter along the line of
sight, making them magnified or demagnified. This is bad, since of course we use the
apparent luminosity of each SN at maximum light to determine how far away it is. Lensing
is most effective over large distances; the effect goes roughly as z2 is non-negligible only for
high-z SNe; z & 1.2. The mean magnification is zero (owing to a theorem that the total
light in the universe is conserved), but the distribution is skewed, meaning that most SNe
get demagnified but occasional ones get strongly magnified. The way to protect against
biases due to gravitational lensing is to seek “safety in numbers”: simply put, if you collect
enough SNe at any given redshift (in practice, ∼ 50 SNe per ∆z = 0.1), the effects of
gravitational lensing will average down to near zero. See Fig. 3.

Type II SNe. Other types of SNe may potentially also be useful for probing dark energy.
Type II SNe (also called the core-collapse SNe) are caused by a different mechanism. Among
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Safety in numbers 3

the implications for cosmological parameter determina-
tion.

3. SAFETY IN NUMBERS

3.1. Perfect Standard Candles

We begin with an idealized experiment: a large sample
of perfect standard candles at high redshift. Without
lensing, these would all be observed to have the same
brightness: a delta function PDF (normalized at µ =
1). We now add in the effects of gravitational lensing,
which both contributes a width to the observed PDF,
and shifts the mode of the PDF to slightly demagnified
values. As already emphasized, the non-Gaussian lensing
PDF preserves the mean:

〈µ〉 =

∫
dµ µP (µ) = 1. (1)

This crucial property implies that, for sufficiently high
numbers of observed high-redshift standard candles at a
given z, the average brightness (in flux) will converge to
the appropriate, unlensed brightness. It is to be noted,
however, that the second moment of the lensing PDF
doesn’t necessarily converge. For the case of point-mass
lenses, the probability at high magnification falls off as
1/µ3, and so the contribution to the second moment is
given by:

〈
µ2

〉
=

∫
dµ µ2P (µ) ∝

∫
dµ/µ, (2)

which diverges logarithmically at high magnification,1

emphasizing the non-Gaussian nature of the PDFs.
It is to be expected that the effects of non-Gaussianity

will be mitigated by observing sufficient numbers of SNe,
and more fully sampling the lensing PDFs. With this in
mind, we define PN (µ) as the lensing magnification PDF
for the mean magnification of a sample of N standard
candles (at a fixed redshift). We calculate P1(µ) via the
SUM code. The distribution for higher numbers of stan-
dard candles can then be calculated recursively:

PN (µ)=

∫∫
dµ̄ dµ̄′ PN−1(µ̄)P1(µ̄

′)δ

(
µ − (N − 1)µ̄ + µ̄′

N

)
,(3)

=N

∫
dµ̄ PN−1(µ̄)P1(Nµ − (N − 1)µ̄). (4)

This recursion becomes particularly straightforward us-
ing spectral methods. Defining P̃1(k) as the Fourier
transform of the lensing PDF P1(µ1), the convolution
becomes

PN (µ) = (2π)(N−2)/2N

∫
dk P̃N

1 (k) e−ikNµ. (5)

As expected, the convolution (eq. 4 or 5) preserves the
normalization and mean of the distribution, and the vari-
ance shrinks as 1/N . This formula reduces to a simple
expression in the case of Gaussian or log-normal proba-
bilities (see Appendix A).

1 In practice this is mitigated by effects such as finite source
size and obscuration. If the second moment does diverge, then the
distribution of observed brightnesses of large numbers of standard
candles does not necessarily converge to a Gaussian distribution
by the central limit theorem, and statistical intuition based upon
normal statistics could lead us astray.

Fig. 1.— Effective lensing magnification distributions for mul-
tiple perfect standard candles, at z = 1.5 in a ΛCDM concor-
dance cosmology. As more sources are observed the distribution
approaches a Gaussian, and eventually converges on a δ-function
at the unlensed magnification, µ = 1.

The distributions at z = 1.5, for various values of N ,
are shown in Figure 1. Note that even for as many as
50 SNe averaged together, the resulting distribution in
magnification is still visibly asymmetric. This is a result
of the high-magnification tail possessed by the lensing
distributions. Figure 2 displays the shift of the mode of
the distribution, as increasing numbers of SNe are ob-
served. As expected, the curve asymptotes (slowly) to
a value of 1, since the mean of the PDFs is always pre-
served, and for large numbers of SNe the PDF should be
well sampled.

Figures 3 and 4 display the variance of the multiple SN
lensing PDFs, as a function of the number of SNe. Since
we are restricting our attention to smoothly clustered
dark matter (as opposed to point masses like MACHOs;
see Amanullah (2003) for a treatment of that case), the
variance for P1(µ) remains well-defined and finite. The
difference between σ and the full width at half maxi-
mum (FWHM) determination of the width is further ev-
idence of the non-Gaussianity of the underlying lensing
distribution: for a perfect Gaussian, σ = FWHM/2.36.
For N = 1, the standard deviation is 1.61 times the
FWHM/2.36. By N = 50, this factor has gone down
to 1.35, indicating a more Gaussian-like distribution.

3.2. Sources with intrinsic luminosity dispersion

If the sources were perfectly calibrated candles, then
the distribution of observed fluxes would exactly mirror
those shown in Figure 1 (i.e., reflect only the lensing mag-
nification suffered during propagation). However, astro-
nomical sources, even calibrated candles such as Type
Ia supernovae, retain some intrinsic variation in their
luminosity. This gives an innate a priori fuzziness in
the distance-redshift relation, and the observed relation
is thus a convolution of both the intrinsic and lensing
flux distributions. In other words, the distribution of
observed flux, F , is given by

P (F )=

∫
dF0

∫
dµ pint(F0) plens(µ) δ(F − F0µ) (6)

=

∫
dµ

µ
pint

(
F

µ

)
plens(µ), (7)

Figure 3: Magnification distribution for lensing of a supernova at z = 1.5 in the usual ΛCDM cosmology
(black curve). Other curves show how the distribution both narrows and becomes more gaussian as
you average over more SNe. Adopted from Holz & Linder (2004).

other things, they do have hydrogen lines in their spectra (unlike SNe Ia) and are more numerous
than SNe Ia. Recent work has produced Hubble diagrams using only SNe II.

Other probes of dark energy. In addition to type Ia supernovae, there are several other
important probes of dark energy. These probes operate using very different physics, and have
very different systematic errors. Therefore, when we have several probes independently indicating
the presence dark energy – or measuring one of its properties – we can be assured that the effect
is real. At this time, not every one of these probes independently indicates DE, but there are at
least three independent lines of evidence for DE.

The principal probes, in addition to SNe Ia, are: baryon acoustic oscillations, weak gravita-
tional lensing, and galaxy cluster abundance. I will now discuss each of those in turn.

Additionally, there are secondary probes of dark energy — ones that might be useful for DE,
but are currently not as well developed as the primary probes. I will discuss these at the end.

Baryon acoustic oscillations (BAO). Power spectrum of density perturbations in dark
matter, P (k), is mainly sensitive to the density in matter (relative to critical), ΩM . If we
assume a flat universe (from inflationary “prior”, and indicated by the CMB observations), then
ΩDE = 1 − ΩM and you get the dark energy density, though not much more (for DE) from the
broad-band P (k).

However, the oscillations in the power spectrum provide much more DE information. Basi-
cally, these oscillations correspond to a single scale - the sound horizon - at the redshift at which
you make the observations. Therefore, the BAO measure the angular diameter distance, dA(z),
at some redshift z (for example, z ∼ 0.2 for 2dF survey, and z ∼ 0.35 for the SDSS). So this is
not too different from the quantity that type Ia SNe measure, which is the luminosity distance
dL(z).

Key to successful application of baryon acoustic oscillations are redshift measurements of
galaxies in the sample. You need the galaxy redshift in order to know at where radially to “put
it”, and thus to reconstruct the baryonic oscillations without bias. Another systematic that
needs to be understood is the bias of galaxies in your sample (whose clustering you measure)
and the underlying dark matter (whose clustering you can predict); it the bias has features in
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scale, then the systematic errors creep in.
Future surveys that plan to mine this method typically propose measuring redshifts of millions

of galaxies, and the goal is to go deep (z ∼ 1, and beyond) and have wide angular coverage as
well.

Coding (that is, computer programming) the power spectrum is very useful. We will consider
not just P (k) defined in the inflation lecture, but also the dimensionless form

∆2(k) ≡ k3P (k)

2π2
(7)

which one can show to be the contribution to variance of density perturbations per log wavenum-
ber. Without proof, we present the final formula for the power spectrum of dark matter density
perturbations in standard FRW cosmology:

∆2(k) = A
4

25

1

Ω2
M

(
k

kpiv

)n−1(
k

H0

)4

[aG(a)]2 T 2(k)Tnl(k) (8)

notice that ∆2 ∝ kn+3, and thus P (k) ∝ kn, was predicted by Harrison, Zeldovich and Peebles
in the late 1960s (well before inflation predicted that n ' 1!). In this equation:

• A is the normalization of the power spectrum (for the concordance cosmology, A ' 2.4 ×
10−9)

• kpiv is the “pivot” around which we compute the spectral index; for WMAP kpiv =
0.002 Mpc−1 is used (beware — occasionally k = 0.05 h Mpc−1 is used too, which is ac-
tually closer to the true pivot and anyway changes which amplitude A is appropriate)

• aG(a) is the linear growth of perturbations. Note that in the EdS model G(a) = 1 identi-
cally and at all times, and in ΛCDM model G(a) at recent times drops, down to the value
of ≈ 0.75 at a = 1. Note that aG(a) is related to the also much-used growth function D(a),
defined as

δ(a) = D(a)δ(a = 1) (9)

via

D(a) ≡ aG(a)

G(1)
, (10)

so that D(1) = 1 as Eq. (9) requires.

• T (k) is the transfer function: you can use fits (e.g. Hu & Eisenstein, 1997) or else the exact
output out of computer codes that solve the coupled Einstein-Boltzmann equations CAMB
(http://cosmologist.info) or CMBFAST (http://cmbfast.org )

• Tnl is prescription for a nonlinear power spectrum. The nonlinearities are important, for
example, today at scales k & 0.2 h Mpc−1. The nonlinearities add power in a complicated
way, and are calibrated from numerical simulations, and given to theorists as fitting for-
mulae1. The most popular recent fitting formulae are to be found in R. Smith et al. (2003)
paper.

1That is, fits to simulation results are given in terms of a formula for Tnl(k) that contains few universal functions, such
as the mass of amplitude fluctuations.
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Figure 4: Left panel: Cosmic shear field (white ticks) superimposed on the projected mass distribution
from a cosmological N-body simulation: overdense regions are bright, underdense regions are dark.
Note how the shear field is correlated with the foreground mass distribution. Figure courtesy of T.
Hamana. Right panel: Cosmic shear angular power spectrum and statistical errors expected for LSST
for w = −1 and −0.9. For illustration, results are shown for source galaxies in two broad redshift bins,
zs = 0−1 (first bin) and zs = 1−3 (second bin); the cross-power spectrum between the two bins (cross
term) is shown without the statistical errors.

Finally, it is useful to mention how to calculate the linear growth function in a cosmology with
an arbitrary dark energy equation of state w(z). Basically you can re-write the usual equation
for the growth of fluctuations

δ̈k + 2Hδ̇k − 4πGρMδk = 0 (11)

(where δk is the Fourier amplitude of the density perturbation — this equation equally holds in
real space because it is linear in δ) to get

2
d2g

d ln a2
+ [5− 3w(a)ΩDE(a)]

dg

d ln a
+ 3 [1− w(a)] ΩDE(a)g = 0 (12)

where g(a) ≡ D(a)/a is the growth rate relative to that in an EdS universe.
Equations (7) and (12) enable you to calculate the power spectrum of density perturbations

at any redshift and any scale, and for any cosmological model. This is useful!

Weak gravitational lensing. The gravitational bending of light by structures in the Uni-
verse distorts or shears the images of distant galaxies; see the left panel of Fig. 4. This distortion
allows the distribution of dark matter and its evolution with time to be measured, thereby
probing the influence of dark energy on the growth of structure (for detailed review, see e.g.
Bartelmann & Schneider 2001).

We work in the Newtonian Gauge, where the perturbed Friedmann-Robertson-Walker metric
reads

ds2 = − (1 + 2Φ) dt2 + a2(t) (1− 2Φ)
[
dχ2 + r2(dθ2 + sin2 θdφ2)

]
(13)

where we have set c = 1, χ is the radial distance, Φ is the gravitational potential, and k = 1, 0,
−1 for closed, flat and open geometry respectively. We also use the comoving distance r which
is defined as
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r(χ) =





(−K)−1/2 sinh[(−K)1/2χ], if ΩTOT < 1;

χ, if ΩTOT = 1;

K−1/2 sin(K1/2χ), if ΩTOT > 1.

(14)

where K is the curvature, ΩTOT is the total energy density relative to critical, and K = (ΩTOT−
1)H2

0 . (Note that this exactly agrees with Eq. (3)).
Gravitational lensing produces distortions of images of background galaxies. These distortions

can be described as mapping between the source plane (S) and image plane (I)

δxSi = Aijδx
I
j (15)

where δx are the displacement vectors in the two planes and A is the distortion matrix

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (16)

The deformation is described by the convergence κ and complex shear (γ1, γ2); the total shear

is defined as |γ| =
√
γ2

1 + γ2
2 . We are interested in the weak lensing limit, where κ, |γ| � 1.

Magnification is also given in terms of κ and γ1,2 as

µ =
1

|1− κ|2 − |γ|2 ≈ 1 + 2κ+O(κ2, γ2) (17)

where the second approximate relation holds again in the weak lensing limit.
But how do you theoretically predict convergence and shear, given some source galaxies and

the foreground distribution on the sky? The convergence in any particular direction on the sky
n̂ is given by the integral along the line-of-sight

κ(n̂, χ) =

∫ χ

0

W (χ′) δ(χ′) dχ′ (18)

where δ is the relative perturbation in matter energy density and

W (χ) =
3

2
ΩM H2

0 g(χ) (1 + z) (19)

is the weight function that “assigns” lensing efficiency to foreground galaxies. Furthermore

g(χ) = r(χ)

∫ ∞

χ

dχ′n(χ′)
r(χ′ − χ)

r(χ′)
−→ r(χ)r(χs − χ)

r(χs)
(20)

where n(χ) is the distribution of source galaxies in redshift (normalized so that
∫
dz n(z) = 1)

and the expression after the arrow holds only if all sources are at a single redshift zs. The
function g peaks about halfway between the observer and the source (that is, at χ ∼ χs/2.
Therefore, the most efficient lenses lie about half-way between us and the source galaxies.

The statistical signal due to gravitational lensing by large-scale structure is termed “cosmic
shear.” The cosmic shear field at a point in the sky is estimated by locally averaging the shapes
of large numbers of distant galaxies. The primary statistical measure of the cosmic shear is the
shear angular power spectrum measured as a function of source-galaxy redshift zs. (Additional
information is obtained by measuring the correlations between shears at different redshifts or
with foreground lensing galaxies.)
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You can typically measure galaxy shear (from the galaxy shapes), but you can theoretically
predict the convergence. Fortunately, in the weak lensing limit, convergence and shear are equal2.

The convergence can be transformed into multipole space (e.g. Bartelmann & Schneider 2001)

κlm =

∫
dn̂κ(n̂, χ)Y ∗lm(n̂), (21)

and the power spectrum is defined as the two-point correlation function (of convergence, in this
case)

〈κ`mκ`′m′〉 = δ``′ δmm′ P κ
` . (22)

The angular power spectrum is

P γ
` (zs) ' P κ

` (zs) =

∫ zs

0

dz

H(z)d2
A(z)

W (z)2P

(
k =

`

dA(z)
; z

)
, (23)

where ` denotes the angular multipole, the weight function W (z) is the efficiency for lensing a
population of source galaxies and is determined by the distance distributions of the source and
lens galaxies, and P (k, z) is the usual power spectrum of density perturbations. Notice integral
along the line of sight — essentially, weak lensing

The dark-energy sensitivity of the shear angular power spectrum comes from two factors:

• geometry—the Hubble parameter, the angular-diameter distance, and the weight function=
W (z); and

• growth of structure—through the redshift evolution of the power spectrum of density per-
turbations (really, function G(a) from Eq. (8)).

It is also possible to use the three-point correlation function of cosmic shear is also sensitive
to dark energy (power spectrum is the two-point correlation function.

The statistical uncertainty in measuring the shear power spectrum on large scales is

∆P γ
` =

√
2

(2`+ 1)fsky

[
P γ
` +

σ2(γi)

neff

]
, (24)

where fsky is the fraction of sky area covered by the survey (that is, fsky = 0.5 for half-sky, etc),
σ2(γi) is the variance in a single component of the (two-component) shear (this number is ∼ 0.2
for typical measurements), and neff is the effective number density per steradian of galaxies with
well-measured shapes.

The first term in brackets dominates on large scales, and comes from cosmic variance of the
mass distribution. The second term dominates on small scales, and represents the shot-noise
from both the variance in galaxy ellipticities (“shape noise”) combined with a finite number of
galaxies (hence inverse proportionality to neff).

The right panel of Fig. 4 shows the dependence on the dark energy of the shear power spectrum
and an indication of the statistical errors expected for a survey such as LSST, assuming a survey
area of 15,000 sq. deg. and effective source galaxy density of neff = 30 galaxies per sq. arcmin.
Current survey cover more modest hundreds of square degrees, with a comparable or slightly

lower galaxy density. Note that the proportionality of errors to f
−1/2
sky means that large sky

coverage is at a premium.

2That is, κ '
√
γ2
2 + γ2

2 . Corrections to this equality are of order κ2 and γ2, and are therefore small since |κ|, |γ| . 0.01.
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Clusters of galaxies. Galaxy clusters are the largest virialized objects in the Universe.
Therefore, not only can they be observed, but also their number density can be predicted quite
reliably, both analytically, and from numerical simulations. Comparing these predictions to
large-area cluster surveys that extend to high redshift (z & 1) can provide precise constraints on
the cosmic expansion history.

z = 0.025 − 0.25
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−1

M⊙

N
(>

M
),

h
−
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z = 0.35 − 0.90

Figure 5: Left panel: Predicted cluster counts for a survey covering 4,000 sq. deg. that is sensitive to
halos more massive than 2× 1014M�, for 3 flat cosmological models with fixed ΩM = 0.3 and σ8 = 0.9.
Lower panel shows fractional differences between the models in terms of the estimated Poisson errors.
From Mohr (2005). Right panel: Measured mass function – n(z,Mmin(z)) – in our notation – from the
400 square degree survey of ROSAT clusters followed up by Chandra. Adopted from Vikhlinin et al.
(2009).

The absolute number of clusters in a survey of size Ωsurvey centered at redshift z and in the
shell of thickness ∆z is given by

N(z,∆z) = Ωsurvey

∫ z+∆z/2

z−∆z/2

n(z,Mmin(z))
dV (z)

dΩ dz
dz. (25)

where Mmin is the minimal mass of clusters in the survey (it’s usually of order 1014M�). Note that
knowledge of the minimal mass is extremely important, since the “mass function” n(z,Mmin(z))
is exponentially decreasing with M , so that most of the contribution comes from a small range
of masses just above Mmin. The mass function is key to theoretical predictions, and it is usually
obtained from a combination of analytic and numerical results; famous mass functions used in
cosmology are the Press-Schechter mass function that dates back to 1970s, or the more recent
Sheth-Tormen mass function (these are basically just different fitting function). The volume
element can easily be related to comoving distance r(z) and the expansion rate H(z) via

dV (z)

dΩ dz
=
r2(z)

H(z)
(26)

and it is basically known exactly for a fixed cosmological model, with no theoretical uncertainty
(unlike the mass function which is usually known to a few percent at best, at a given M and z).
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The sensitivity of cluster counts to dark energy arises – as in the case of weak lensing – from
two factors:

• geometry, the term dV (z)/(dΩ dz) in Eq. (25) is the comoving volume element

• growth of structure, n(z,Mmin(z)) depends on the evolution of density perturbations, cf.
Eq. (11).

This last point is worth emphasizing further. Fitting functions for the cluster mass function
(e.g. Press-Schechter) relate it to the primordial spectrum of density perturbations. The mass
function’s near-exponential dependence upon the power spectrum is at the root of the power
of clusters to probe dark energy. In particular, the mass function explicitly depends on the
amplitude of mass fluctuations smoothed on some scale R

σ2(R) =

∫ ∞

0

∆2(k)

(
3j1(kR)

kR

)2

d ln k (27)

where R is traditionally taken to be ∼ 8 h−1Mpc, the characteristic size of galaxy clusters. Here
of course ∆2(k) is our dear power spectrum from Eq. (7).

Fig. 5 shows the sensitivity to the dark energy equation-of-state parameter of the expected
cluster counts for the South Pole Telescope and the Dark Energy Survey. At modest redshift,
z < 0.6, the differences are dominated by the volume element; at higher redshift, the counts are
most sensitive to the growth rate of perturbations.

Summary of dark energy constraints. Figure 6, adopted from Vikhlinin et al. (2009),
summarizes constraints in the ΩDE − w plane (assuming a flat universe) from clusters, CMB,
BAO and SNe Ia.

0.60 0.65 0.70 0.75 0.80 0.85

−1.5
−1.4
−1.3
−1.2
−1.1
−1.0
−0.9
−0.8
−0.7
−0.6

ΩX

w 0

BAO

SN Ia

W
MAP

clusters
+WMAP

SN+BAO
+WMAP

all

Figure 6: Summary of constraints in the ΩDE−w plane (assuming a flat universe) from clusters, CMB,
BAO and SNe Ia. Note that the dark energy density to critical today, ΩDE, is labeled as ΩX in this
graph. Adopted from Vikhlinin et al. (2009).

The four principal probes of DE: systematics summary. In Table 1 we list the
principal strengths and weaknesses of the four principal probes of DE. Control of systematic
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Table 1: Comparison of dark energy probes, adopted from Frieman, Turner
and Huterer [2008]. CDM refers to Cold Dark Matter paradigm, FoM is the
Figure-of-Merit for dark energy surveys defined in the Dark Energy Task
Force (DETF) report, while SZ refers to Sunyaev-Zeldovich effect.

Method Strengths Weaknesses Systematics

WL growth+geometry, CDM assumptions Shear systematics,
Large FoM Photo-z

SN pure geometry, complex physics evolution,
mature dust extinction

BAO pure geometry, coarse-grained bias, non-linearity,
low systematics information redshift distortions

CL growth+geometry, CDM assumptions mass-observable,
X-ray+SZ+optical selection function

errors — observational, instrumental and theoretical — is crucial for these probes to realize
their intrinsic power in constraining dark energy.

Role of the CMB. While the CMB provides precise cosmological constraints, by itself it has
little power to probe dark energy. The reason is simple: the CMB provides a single snapshot of
the Universe at a time when dark energy contributed but a tiny part of the total energy density
(a part in 109 if dark energy is the vacuum energy, or when w = −1). Nonetheless, the CMB
plays a critical supporting role by determining other cosmological parameters, such as the spatial
curvature and matter density, to high precision, thereby considerably strengthening the power of
the methods discussed above. Essentially, what you get from the CMB is a single measurement
of the angular diameter distance to recombination, dL(z ≈ 1000) — therefore you get a single
very accurate measurement of the parameters ΩM , ΩDE (if you do not assume a flat universe),
and w (or w(z) if you don’t assume that the equation of state is constant). Therefore, while
from the CMB alone there is degeneracy between the DE parameters, CMB is very useful to
break degeneracy from other cosmological probes (see Frieman, Huterer, Linder & Turner 2005
for details).

Data from the Planck CMB mission, launched earlier in 2009, will complement those from
dark energy surveys. If the Hubble parameter can be directly measured to better than a few
percent, in combination with Planck it would also provide powerful dark energy constraints.

Secondary probes. There are a number of secondary probes of dark energy. Here we review
a few of them. You are welcome to learn more about them at your leisure if you are interested.

• The Integrated Sachs-Wolfe (ISW) effect provided a confirmation of cosmic acceleration
(e.g. Scranton et al. 2003 from the SDSS). ISW impacts the large-angle structure of the
CMB anisotropy, but low-` multipoles are subject to large cosmic variance, limiting their
power. Nevertheless, ISW is of interest because it may be able to show the imprint of
large-scale dark-energy perturbations (Hu & Scranton 2004).

• Gravitational radiation from inspiraling binary neutron stars or black holes can serve as
“standard sirens” to measure absolute distances (Holz & Hughes 2005). If their redshifts
can be determined, then they could be used to probe dark energy through the Hubble
diagram (Dalal et al. 2006).
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• Long-duration gamma-ray bursts have been proposed as standardizable candles (e.g. Schae-
fer 2003), but their utility as cosmological distance indicators that could be competitive
with or complementary to SNe Ia has yet to be established. The angular size-redshift re-
lation for double radio galaxies has also been used to derive cosmological constraints that
are consistent with dark energy.

• The optical depth for strong gravitational lensing (multiple imaging) of QSOs or radio
sources has been proposed and used to provide independent evidence for dark energy,
though these measurements depend on modeling the density profiles of lens galaxies.

• The Sandage-Loeb effect (Sandage 1962, Loeb 1998), the redshift change of an object
measured using extremely high-resolution spectroscopy over a period of 10 years or more,
will some day be useful in constraining the expansion history at higher redshift, 2 . z . 5
(Corasaniti, Huterer & Melchiorri 2005).

• Polarization measurements from distant galaxy clusters in principle provide a sensitive
probe of the growth function and hence dark energy (Cooray, Huterer & Baumann 2004).

• The relative ages of galaxies at different redshifts, if they can be determined reliably, provide
a measurement of dz/dt and, from

t(z) =

∫ t(z)

0

dt′ =

∫ ∞

z

dz′

(1 + z′)H(z′)
, (28)

measure the expansion history directly (Jimenez & Loeb 1998). Measurements of the
abundance of lensed arcs in galaxy clusters, if calibrated accurately, provide a probe of
dark energy.

Surveys overview. Many ambitious surveys are planned for the next decade or so. These
include ground-based and space-based surveys, and include the four principal cosmological probes
(SNe Ia, BAO, weak lensing and clusters) and other. These surveys, their principal specifications
and main probes with which they are probing dark energy, are given in Table 2.
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Table 2: Dark energy projects proposed or under construction. Stage refers
to the DETF time-scale classification. Adopted from Frieman, Turner &
Huterer (2008).

Survey Description Probes Stage

Ground-based:
ACT SZE, 6-m CL II
APEX SZE, 12-m CL II
SPT SZE, 10-m CL II
VST Optical imaging, 2.6-m BAO,CL,WL II
Pan-STARRS 1(4) Optical imaging, 1.8-m(×4) All II(III)
DES Optical imaging, 4-m All III
Hyper Suprime-Cam Optical imaging, 8-m WL,CL,BAO III
ALPACA Optical imaging, 8-m SN, BAO, CL III
LSST Optical imaging, 6.8-m All IV
AAT WiggleZ Spectroscopy, 4-m BAO II
HETDEX Spectroscopy, 9.2-m BAO III
PAU Multi-filter imaging, 2-3-m BAO III
SDSS BOSS Spectroscopy, 2.5-m BAO III
WFMOS Spectroscopy, 8-m BAO III
HSHS 21-cm radio telescope BAO III
SKA km2 radio telescope BAO, WL IV

Space-based:
JDEM Candidates

ADEPT Spectroscopy BAO, SN IV
DESTINY Grism spectrophotometry SN IV
SNAP Optical+NIR+spectro All IV

Proposed ESA Missions
DUNE Optical imaging WL, BAO, CL
SPACE Spectroscopy BAO
eROSITA X-ray CL

CMB Space Probe
Planck SZE CL

Beyond Einstein Probe
Constellation-X X-ray CL IV
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Azores Cosmology School 2011 Dragan Huterer, University of Michigan

Topic II: Descriptions of Dark Energy

Dark Energy: review of important facts. To review the last part of my lecture which
was not in these notes, here are the five important things you should know about dark energy:

1. Dark energy has negative pressure. It can be described with its energy density relative
to critical today ΩDE, and equation of state w ≡ pDE/ρDE; the cosmological constant (or
vacuum energy) has w = −1 precisely and at all times. More general explanations for
dark energy may have constant or time dependent equation of state. Assuming constant
w, current constraints roughly give w ≈ −1 ± 0.2. Measuring the equation of state (and
its time dependence) may help understand the nature of dark energy, and is a key goal of
modern cosmology.

2. Dark energy suppresses the growth of density perturbation: whenever dark energy domi-
nates, structures do not grow.

3. Dark energy comes to dominate the density of the universe only recently: at z & 2, dark
energy is negligible. This has to be so not only from the observations, but also from the
fact that, if dark energy dominated throughout the history of the universe, we would have
had no galaxies and clusters today.

4. Dark energy is spatially smooth. It affects both the geometry (that is, distances in the
universe) and the growth of structure (that is, clustering and abundance of galaxies and
clusters of galaxies).

5. Dark energy bring two puzzling problems with it. The first one, the coincidence problem, is
the fact that the dark energy to dark matter ratio today is O(1), and not huge or near zero;
this is not necessarily a problem depending on who you talk to. The second problem is
one of the most famous puzzles in physics, and is called the cosmological constant problem:
the fact that the dark energy density, ρDE ∼ mPl

2H2
0 , is about 120 orders of magnitude

smaller than the natural Planck scale, ρP ∼ mPl
4.

Parametrizations of dark energy: Introduction. The absence of a consensus model
for cosmic acceleration presents a challenge in trying to connect theory with observations. For
dark energy, the equation-of-state parameter w provides a useful phenomenological description
Because it is the ratio of pressure to energy density, it is also closely connected to the underlying
physics. However, w is not fundamentally a function of redshift, and if cosmic acceleration is
due to new gravitational physics, the motivation for a description in terms of w disappears. On
the practical side, determining a free function is more difficult than measuring parameters. We
now review a variety of formalisms that have been used to describe and constrain dark energy.

First, let us recall some basics. From continuity equation

ρ̇+ 3H(p+ ρ) = 0, or (29)

d ln ρ

d ln a
= −3(1 + w), (30)
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we can calculate the dark energy density

ρDE(a) = ρDE,0 exp

(
−3

∫ a

1

(1 + w(a′))d ln a′
)

(31)

ρDE(z) = (1− ΩM)ρcrit,0 exp

(
3

∫ z

0

(1 + w(z′))d ln(1 + z′)

)
(32)

where in the second line we assumed a flat universe in which ΩDE = 1− ΩM . Let us also write
possibly the most useful form

ρDE(z)

ρDE(0)
= exp

(
3

∫ z

0

(1 + w(z′))d ln(1 + z′)

)
. (33)

Parametrizations. The simplest parameterization of dark energy is

w = const. (34)

This form fully describes vacuum energy (w = −1) or topological defects (w = −N/3 with N an
integer dimension of the defect – 0 for monopoles, 1 for strings, 2 for domain walls). Together
with ΩDE and ΩM, w provides a 3-parameter description of the dark-energy sector (2 parameters
if flatness is assumed). However, it does not describe scalar field or modified gravity models
which generically have a time-varying w.

A number of two-parameter descriptions of w have been explored in the literature, e.g.,

w(z) = w0 + w′z (35)

w(z) = w0 + b ln(1 + z). (36)

For low redshift they are all essentially equivalent, but for large z, some lead to unrealistic
behavior, e.g., w � −1 or � 1. The energy density with these parametrizations can easily be
worked out starting with the continuity equation ρ̇ + 3H(p + ρ) = 0; for example, for the first
parametrization (with w′) we have

ρ(z) = ρ0(1 + z)3(1+w0−w′)e3w′z. (37)

The parametrization

w(a) = w0 + wa(1− a) = w0 + waz/(1 + z) (38)

avoids this problem and leads to the most commonly used description of dark energy, namely
(ΩDE,ΩM, w0, wa). The energy density is then

ρ(a) = ρ0a
−3(1+w0+wa)e−3(1−a)wa (39)

More general expressions have been proposed, for example, Padé approximants or the tran-
sition between two asymptotic values w0 (at z → 0) and wf (at z →∞):

w(z) = w0 +
(wf − w0)

1 + exp[(z − zt)/∆]
. (40)

However one problem with introducing more parameters are a) that additional parameters are
very hard to measure, and b) that the parametrizations are ad hoc, and not well motivated from
either theory or measurements’ point of view.
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Pivot w and pivot redshift. The two-parameter descriptions of w(z) that are linear in the
parameters entail the existence of a “pivot” redshift zp at which the measurements of the two
parameters are uncorrelated and the error in wp ≡ w(zp) reaches a minimum; see the left panel
of Fig. 7.

Here is how you compute the pivot redshift (assuming, for example, the (w0, wa) parametriza-
tion). Note that we are looking for the equation of state of the form

w(a) = wp + (ap − a)wa (41)

= wp +
zp

1 + zp
wa (42)

Then you proceed as follows:

• Compute the covariance matrix for all parameters (in the Fisher matrix formalism, this
is just the inverse of the Fisher matrix). For two parameters pi and pj, the covariance is
defined as

Cov(pi, pj) ≡ 〈(pi − p̄i)(pj − p̄j)〉 (43)

where this is just the likelihood-weighted average over all values of (pi, pj) and the overbar
indicates the mean value of that parameter from the data.

• Marginalize (that is, integrate the likelihood) over all other parameters, leaving only the
2× 2 matrix on w0 and wa

• Assuming wp = w0 − (ap − 1)wa, we have 0 = Cov(wp, wa) = Cov(w0, wa) − (ap −
1)Cov(wa, wa), implying that ap − 1 = Cov(w0, wa)/Cov(wa, wa). Therefore

ap = 1 + Cov(w0, wa)/Cov(wa, wa) (44)

• Finally, you can compute the error in wp as (using in second line Eq. 44)

Cov(wp, wp) = Cov(w0, w0)− 2(ap − 1)Cov(w0, wa) + (ap − 1)2Cov(wa, wa) (45)

= Cov(w0, w0)− Cov(w0, wa)
2

Cov(wa, wa)
(46)

The redshift of this sweet spot varies with the cosmological probe and survey specifications;
for example, for current SN Ia surveys zp ≈ 0.25, while for weak lensing and baryon acoustic
oscillations zp ∼ 0.5-0.7 because of the way in which dark energy enters the physical quantities
featured in these probes.

Note that forecast constraints for a particular experiment on wp are numerically equivalent
to constraints one would derive on constant w. This is because almost all information is concen-
trated in wp (which was optimally chosen precisely using that criterion).

Direct reconstruction. Another approach is to directly invert the redshift-distance relation
r(z) measured from SN data to obtain the redshift dependence of w(z) in terms of the coordinate
distance r(z) that is measured, for example, by SNe Ia3. Note that, since r(z) =

∫
dz/H(z), we

have

H(z) =
1

(dr/dz)
(47)

3SNe Ia, of course, measure the luminosity distance dL(z), but in a flat universe the two are only offset by a factor of
1 + z.
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Figure 7: Left panel: Example of forecast constraints on w(z), assuming w(z) = w0 +w′z. The “pivot”
redshift, zp ' 0.3, is where w(z) is best determined. Right panel: The four best-determined (labelled
1−4) and two worst-determined (labelled 49, 50) principal components of w(z) for a future SN Ia survey
such as SNAP, with several thousand SNe in the redshift range z = 0 to z = 1.7.

Furthermore, it is almost as easy to reconstruct the dark energy density; since

H2 = H2
0

[
ΩM(1 + z)3 + (1− ΩM)

ρDE(z)

ρDE(0)

]
(48)

then
ρDE(z)

ρDE(0)
=

1

1− ΩM

[
H2

H2
0

− ΩM(1 + z)3

]
(49)

or
ρDE(z)

ρDE(0)
=

1

1− ΩM

[
1

(d(H0r)/dz)2
− ΩM(1 + z)3

]
(50)

As an exercise, you can show that the equation of state can also be reconstructed as

1 + w(z) =
1 + z

3

3H2
0 ΩM(1 + z)2 + 2(d2r/dz2)/(dr/dz)3

H2
0 ΩM(1 + z)3 − (dr/dz)−2

. (51)

Note that H0 only enters in the combination ΩMH
2
0 which is measured by the CMB extremely

well. Therefore, the main sources of error should be in the derivatives of the comoving distance
— more about that in a second.

Assuming that dark energy is due to a single rolling scalar field, the scalar potential can also
be reconstructed,

V [φ(z)] =
1

8πG

[
3

(dr/dz)2
+ (1 + z)

d2r/dz2

(dr/dz)3

]
− 3ΩMH

2
0 (1 + z)3

16πG
(52)

Direct reconstruction is the only approach that is truly model-independent. However, it
comes at a price – taking derivatives of noisy data. In practice, one must fit the distance data
with a smooth function — e.g., a polynomial, Padé approximant, or spline with tension; for
example,

H0r(z) =
z + a2z

2

1 + b1z + b2z2
(53)
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(which is a Padé approximant fit, made so that H0r → z when z � 1).
The fitting process introduces systematic biases – it is simply very hard to take second

derivative of noisy data (if on a given day you want to be frustrated a little extra, try it!). While
a variety of methods have been pursued it appears that direct reconstruction is too challenging
and not robust even with SN Ia data of excellent quality. Although the expression for ρDE(z)
involves only first derivatives of r(z), it contains little information about the nature of dark
energy. For a review of dark energy reconstruction and related issues, see Sahni & Starobinsky
2006.

Principal components. The most general, and the only really non-parametric method, to
reconstruct properties of DE is that of principal components of dark energy. The cosmological
function that we are trying to determine — w(z), ρDE(z), or H(z) — can be expanded in terms
of principal components, a set of functions that are uncorrelated and orthogonal by construction.
In this approach, the data determine which aspects of a cosmological function — which linear
combinations of w(zi), in this case — are measured best.

For example, suppose we parametrize w(z) in terms of piecewise constant values wi (i =
1, . . . , N), each defined over a small redshift range (zi, zi + ∆z). Then you get the principal
components as follows

• Create the covariance matrix of all parameters, including the wi

• Marginalize over all non-w parameters, and be left with the N × N covariance matrix in
the wi — call it C; also compute its inverse, C−1

• Diagonalize the inverse covariance: C−1 = W TΛW , where Λ is diagonal and W is orthog-
onal

• Rows of W T are the eigenvectors ei — the “principal components” — while the elements
of Λ give the accuracies in how well each PC is measured. The eigenvectors are of course
orthonormal so that

∫
ei(z)ej(z)dz = δij.

In other words

1 + w(z) =
N∑

i=1

αi ei(z) , (54)

with
σ(αi) = λ

−1/2
i (55)

(note that we wisely added unity to w in its expansion, so that the fiducial expansion parameters
are zero around ΛCDM).

In the limit of small ∆z this recovers the shape of an arbitrary dark energy history (in
practice, N & 20 is sufficient), but the estimates of the wi from a given dark energy probe will
be very noisy for large N . Principal Component Analysis extracts from those noisy estimates
the best-measured features of w(z).

The coefficients αi, which can be computed via the orthonormality condition

αi =

∫
(1 + w(z))ei(z)dz (56)

Examples of these components are shown for a future SN survey in the right panel of Fig. 7.
There are multiple advantages of using the PCs of dark energy (note you can also calculate

PCs of ρDE(z), H(z), etc):
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Figure 8: Uncorrelated band-power estimates of the equation of state w(z) of dark energy are shown in
panel (a), based on SN data available circa 2004. Vertical error bars show the 1 and 2-σ error bars (the
full likelihoods are shown in panel (c)), while the horizontal error bars represent the approximate range
over which each measurement applies. The full window functions in redshift space for each of these
measurements are shown in panel (b); they have small leakage outside of the original redshift divisions.
The window functions and the likelihoods are labeled in order of increasing redshift of the band powers
in panel (a). Adopted from Huterer & Cooray (2004).

• The method is as close as it gets to “model independent”

• Data tells you what you measure, and how well — no arbitrary parametrizations

• One can use this approach to design a survey that is most sensitive to the dark energy
equation-of-state parameter in some specific redshift interval...

• ... or to study how many independent parameters are measured well by a combination of
cosmological probes (i.e. how many PCs have σ(αi), or σ(αi)/αi, less than some desired
threshold value)

There are a variety of extensions of this method. A popular “relative” of the PCs is the
approach where one parametrizes the equation of state in piecewise constant values, but then uses
the diagonalization similar to that above to find linear, nearly localized and 100% uncorrelated
linear combinations of these bins. A plot of these uncorrelated band-powers is easy to visualize
in terms of checking of w(z) varies with redshift. See Fig. 8 and Huterer & Cooray (2004) for
details.

Figures of Merit. We finally discuss the so-called figures of merit (FoMs) for dark energy
experiments. A FoM is a number, or collection of numbers, that serves as simple and quantifiable
metrics by which to evaluate the accuracy of constraints on dark energy parameters from current
and proposed experiments. For example, marginalized accuracy in the (constant) equation of
state, w, could serve as a figure of merit – since a large FoM is “good”, you would probably want
something like FoM = 1/σw, or 1/σmw where m is some positive power.

The most commonly discussed figure of merit is that proposed by the Dark Energy Task
Force (Albrecht et al 2007, though this proposal goes back to Huterer & Turner 2001 paper),
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Figure 9: Figure of merit with PCs. Left plot: Marginalized 1D posterior distributions for the first 6
PCs of flat (solid blue curves) and nonflat (dashed red curves) quintessence models. Top row: current
Union+WMAP data; bottom row: forecasts for SNAP+Planck assuming a realization of the data

with αi = 0. Right plot: PC-based FoM comparisons. Top panel: PC figures of merit FoM
(PC)
n

with forecasted uncertainties for SNAP+Planck and with measured uncertainties for Union+WMAP.
Bottom panel: Ratios of FoM

(PC)
n forecasts to current values. In both panels, point types indicate

different quintessence model classes: flat (solid points) or non-flat (open points), either with (squares)
or without (circles) early dark energy. Adopted from Mortonson, Huterer & Hu (2010).

which is essentially inverse area in the w0−wa plane. For uncorrelated w0 and wa this would be
∝ 1/(σw0 × σwa ; because the two are typically correlated, the FoM can be defined as

FoM(w0−wa) ≡ (detC)−1/2 ≈ 6.17π

A95

, (57)

Note the constant of proportionality is really not that important, since typically you compare
the FoM from different surveys, and the constant disappears when you take the ratio.

The standard “DETF FoM” defined in Eq. (57) keeps some information about the dynamics
of DE (that is, the time variation of w(z)). But we can do better, and several more general
FoMs have been proposed. My favorite one is, surprisingly, from a paper that I coauthored;
Mortonson, Huterer & Hu (2010) proposed taking the FoM to be inversely proportional to the
volume of the n-dimensional ellipsoid in the space of principal component parameters

FoM(PC)
n ≡

(
detCn

detC
(prior)
n

)−1/2

. (58)

where the prior covariance matrix is proportional to the (squares of) the product of prior ranges
in the principal components. As with the multiplicative constant in Eq. (57), the prior matrix

is unimportant since the detC
(prior)
n term cancels out once you take the ratio of FoMs of two

surveys you are comparing. See Fig. 9 for an illustration.
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Azores Cosmology School 2011 Dragan Huterer, University of Michigan

Topic III: Cosmological data and likelihood analysis

Recommended reading: There are some excellent resources on topics covered here.

• “Numerical Recipes - the Art of Scientific Computing”, Press, Teukolsky, Vetterling &
Flannery — A famous book that doesn’t disappoint on topics of interest here — see its
chapter 15.

• “Bayes in the sky: Bayesian inference and model selection in cosmology”, R. Trotta,
arXiv:0803.4089 — A fairly complete scripture of various Bayesian techniques from one
of the Apostles.

• “A practical guide to Basic Statistical Techniques for Data Analysis in Cosmology”, L.
Verde, arXiv:0712.3028 — A good, broad but rushed overview of various numerical/statistical
topics in cosmology, with a good list of references.

• “Karhunen-Loeve Eigenvalue Problems in Cosmology: How Should We Tackle Large Data
Sets?”, M. Tegmark, A. Taylor and A. Heavens, ApJ, 480, 22 (1997) — one of the papers
that introduced the Fisher matrix to cosmology; explained well and major bonus materials
on data compression in cosmology if you are interested.

• “Unified approach to the classical statistical analysis of small signals”, G.J. Feldman and
R.D. Cousins, PRD, 57, 3873 (1998) — If you would like to be a frequentist, read this very
clear and important paper, which also gives applications to neutrino oscillation data.

Bayesian vs. frequentist. There are two principal approaches to statistics, and their
competition is as famous as that between the Montagues and Capulets, or the Lakers and the
Celtics. These are the Bayesian and frequentist approaches.

Frequentist interpretation of probability defines an event’s probability as the limit of its
relative frequency in a large number of trials. So I observe the event unfold many times and, in
the limit when that number goes to infinity, the relative frequency of its outcome becomes its
probability.

Bayesian probability interprets the concept of probability as ’a measure of a state of knowl-
edge, and not as a frequency. One of the crucial features of the Bayesian view is that a probability
can be assigned to a hypothesis, which is not possible under the frequentist view, where a hy-
pothesis can only be rejected or not rejected.

More formally, the Bayesian probability calculus makes use of Bayes’ formula - a theorem
that is valid in all common interpretations of probability - in the following way:

P (M |D) =
P (D|M)P (M)

P (D)
(Bayes′ theorem) (59)

where M represents a model (or a hypothesis) and D is data. Here

• P (M) is a prior probability of M the probability that M is correct before the data D was
seen
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• P (D|M) is the conditional probability of seeing the data D given that the hypothesis H is
true. P (D|M) is called the likelihood

• P (D) is the a priori probability of witnessing the data D under all possible hypotheses.
It is a normalizing constant that only depends on the data, and which in most cases does
not need to be computed explicitly. It is also called the marginal probability, and given by
P (D) =

∫
P (D|M)P (M)dM

• P (M |D) is the posterior probability: the probability that the hypothesis is true, given the
data and the previous state of belief about the hypothesis.

The key thing to note is that we are most often interested in the probability of a model given
data, P (M |D), while what we can most often calculate from the data is the likelihood of the
data given the model, P (D|M). Bayes’ theorem lets you go form from the latter to the former

P (M |D) ∝ P (D|M)P (M) (Bayesian evidence) (60)

Note that the two are equal if the prior in the model space is flat. However, if the prior is not
flat, the two will in general differ.

Bayesian approach has many advantages, and has been near-universally accepted in cosmol-
ogy since the data boom in the 1990s.

• The Bayesian approach is well founded theoretically, and is consistent

• It allows easy incorporation of different data sets. For example, you can have one data set
impose an effective prior on the model space M , and then this prior probability is updated
with a new data set using the Bayes’ theorem.

• In frequentist statistics, a hypothesis can only be rejected or not rejected. In Bayesian
statistics, a probability can be assigned to a hypothesis (provided you know or can calculate
the marginal probability of the data, P (D)).

Bayesian-frequentist example. Say for example that we have a measurement of the
Hubble constant of (72± 8)km/s/Mpc. What would the Bayesian and the frequentist say?

• Bayesian: the posterior distribution forH0 has 68% if its integral between 64 and 80km/s/Mpc.
The posterior can be used as a prior on a new application of Bayes’ theorem.

• Frequentist: Performing the same procedure will cover the real value of H0 within the limits
68% of the time. But how do I repeat the same procedure (generate a new H0 out of the
underlying model) if I only have one Universe?

Let us give another example. Say I would like to measure ΩM and ΩΛ from SN data (let
us ignore M for the moment and just assume these two parameters). What would the two
statisticians do?

• Bayesian: Take some prior (say, uniform prior in both ΩM and ΩΛ). Then, for each model
M = (ΩM ,ΩΛ), compute the likelihood of the data, P (D|M) using, for example, the
chi-square statistic. Obtain the posterior probability on the two parameters using Bayes’
theorem; P (M |D) ∝ P (D|M)P (M).
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• Frequentist: Calibrate your statistic by assuming a model within the range you are exploring
(say, ΩM = ΩΛ = 0.5) and running many realizations of SN data with that underlying
model. Each realization i of the data (points, and errors) will given you χ2

i . Histogramming
χ2
i will calibrate the likelihood. Now calculate the χ2 statistic for the real data, assuming

the same model, and compare to the histogram — this will give you a (relative likelihood)
for that model. Repeat for each model M = (ΩM ,ΩΛ).

The latter approach is also called the Feldman-Cousins approach, referring to an excellent
paper that I encourage you to read. It is computationally very demanding, since it requires a
suite of realizations of data for each model M . To make it less demanding, you can hope for the
best and assume the histogram of the statistic to be the same for each model, and only do it for
one model.

So what prior do I use? In general, the results will depend on the prior. For example, you
can consider using a flat prior on some parameter p (equal probability per dp), or a prior flat in
the log of p (so equal probability per d ln p). However, when the data is very informative, it will
completely dominate over the prior and the prior itself will be irrelevant. In other words, when
you see people arguing about which prior is “more physical” given that they lead to different final
parameter constraints, you conclude that the data they are using is quite weak and probably
cannot lead to robust cosmological parameter constraints.

Maximum likelihood Often times, due to the central limit theorem, the likelihood of
measuring data given the model can be represented in terms of the Gaussian likelihood

L =
1

(2π)n/2| detC|1/2 exp

[
−1

2
(d− d̄)Ti C

−1
ij (d− d̄)j

]
(61)

Note that the term in the exponent is just minus one half times chi-squared

χ2 ≡ (d− d̄)Ti C
−1
ij (d− d̄)j (62)

(where here and below we implicitly sum over the repeated indices). Note that maximum a
Gaussian likelihood, and maximizing chi-square statistic, are one and the same in the limit when
the covariance matrix C doesn’t depend on the cosmological parameters.

Markov chain Monte Carlo. Say you want to constrain N cosmological parameters; let
us take N = 10 typical for cosmology. Say, for simplicity, that you want to allow each parameter
to take M discrete values; let us take M = 10 which is the bare barest minimum you would want
to do. Then the total number of models to explore (and calculate observables for) is MN = 1010,
which is huge — this might be doable for a simpler data set, but if you consider running CAMB
(which actually only takes seconds per model), this is about 100 years. And if you want to allow
the still-modest M = 20 values per parameter, then likelihood calculations would take 100,000
years, which means that an early Neanderthal starting the chains would make it just in time for
his paper to be published this year.

Markov chain Monte Carlo (MCMC) methods are an incredibly powerful tool to overcome
these problems4. MCMC are a class of algorithms for sampling from probability distributions
based on constructing a Markov chain that has the desired distribution as its equilibrium distri-
bution. The state of the chain after a large number of steps is then used as a sample from the
desired distribution. The quality of the sample improves as a function of the number of steps.

4A Markov process (or a Markov chain) is a process where the future states only depend on the present state, but not
on the past states.

25



Instead of going exponentially with the number of parameters, the MCMC calculation goes
approximately linearly with N .

Usually it is not hard to construct a Markov Chain with the desired properties. The more
difficult problem is to determine how many steps are needed to converge to the stationary
distribution within an acceptable error. A good chain will have rapid mixing - the stationary
distribution is reached quickly starting from an arbitrary position.

MCMC: the science. We will only consider the Metropolis-Hastings algorithm here, which
is the most simple variant of MCMC.

The Metropolis-Hastings algorithm draws samples from the probability distribution P (x).
How does it do that? The algorithm generates a Markov chain where each state xt+1 depends
only on the previous state xt. The algorithm uses a proposal density Q(x′|xt) which depends on
the current state xt to generate a new proposed sample x′. This proposal is accepted as the next
value (so, xt+1 = x′) if α, drawn from a uniform distribution U [0, 1], satisfies

α <
P (x′)Q(xt|x′)
P (xt)Q(x′|xt) (63)

If the proposal is not accepted, then the current value of x is retained, so that xt+1 = xt.
So the step-by-step instructions for the Metropolis-Hastings algorithm are as follows: given

you are at some parameter value xt, you

• calculate the value a1a2, where a1 = P (x′)/P (x) is the likelihood ratio between the proposed
sample x′ and the previous sample xt, and a2 = Q(xt|x′)/Q(x′|xt) is the ratio of the proposal
density in two directions (from xt to x′ and vice versa). Note that a2 = 1 if the proposal
density is symmetric, which we often assume

• if a ≥ 1, then move to the proposed point; xt+1 = x′; repeat

• if a < 1, then draw a random number α ∈ U [0, 1]. If a > α then move to the proposed
point; xt+1 = x′. If a < α, do NOT move to the proposed point; xt+1 = xt;

• repeat

MCMC: the art. The Metropolis-Hastings algorithm (above) is about 10 lines of computer
code. So what’s all the fuss about? Well, to make a successful MCMC, you need to take care of
a number of things.

1. You need to assure that the burn-in stage is not included in the final results. This typically
means running the MCMC for a number of steps (say, 10,000), discarding those results,
and then doing a “production run” (with, say, a million steps)

2. You need to ensure that the MCMC is efficient — ideally, it will move from xt to the pro-
posal value x′ about 1/3 of the time. Imagine if you had two highly degenerate parameters
— say, ΩM and h in CMB measurements where only the combination ΩMh

2 is well deter-
mined. Say you use an otherwise reasonable proposal distribution which is a multivariate
Gaussian with standard deviation equal to the guessed error in each parameter, and without
correlation between parameters. Steps in ΩM or h separately will lead to rejection of the
proposed steps vast majority of the time!. However, if you are clever and reparameterize the
problem so that you have parameter ΩMh

2 (and, say, ΩM separately), then the acceptance
will be much better, and the asymptotic distribution will be reached sooner. Equivalently,
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making the proposal function be an “off-diagonal” Gaussian with eigendirections along the
axes of the (pre-computed, rough) estimate for the target distribution P (x) will help — for
example, having used a short chain to discover that ΩM and h are highly correlated, you
could step along the gaussian whose axes are short and long axes of the ΩMh

2 contour in
2D.

3. Finally, you need to make sure mixing of your chain. To do so, you can thin the chain,
writing out every 100th (for example) value, so that you decrease the (otherwise very high)
correlation between the steps. Likewise, you should run several (say, four) chains, and
test convergence using one of the criteria (say, the Gelman-Rubin criterion) that typically
compare variance within a chain with variance between different chains.

MCMC: enjoying the fruits of labor. MCMC is really a fantastic tool, enabling ex-
ploration of the multi-dimensional likelihoods that cannot be even contemplated using a naive
multi-dimensional gridding of the parameter space.

Not only that, but computing constraints on any quantities of interest, once you have run
your chains, is trivial. Post-processing the MCMC output is easy. What you need to do is
write out chains, together with the “weight” (number of times the chain is “stuck” at that value
if the proposed move was rejected) for each step. Then, for any parameter set of choice —
a single parameter (e.g. ΩM), joint contour of two parameters (e.g. (ΩM , w)), a function of a
few parameters (e.g. w(a) = w0 + wa(1 − a)), whatever — you just look at their weights, rank
order them, and add them until you get 68% or 95% or whatever fraction of the total weight.
Remember, weight is proportional to posterior likelihood owing to ergodic property of MCMC.

Moreover, let us say that, after this hard work, that you decide you would like to combine
your constraints with some other. That’s easy — you just use constraints from your chain as a
prior, and combine with new constraints to get a new posterior.

Fisher information matrix. Fisher matrix presents an excellent tool to forecast errors
from a given experiment. Even though we have argued that the MCMC itself is “easy” and
“fast” compared to brute force methods for exploring the likelihood, in comparison the Fisher
matrix is still much easier and faster tool to forecast the likelihood distribution, given some
expected experimental data.

Let us assume that we have cosmological measurements, and that the associated likelihood
in the data can be represented by the likelihood L. The Fisher matrix is formally defined as the
curvature of the likelihood — that is, matrix of second derivatives of the log likelihood around
the peak5

Fij =

〈
−∂

2 lnL
∂pi∂pj

〉
(64)

where {pi} is the set of cosmological parameters.
When doing the Fisher matrix, we always6 assume that the data are distributed according to

a multivariate Gaussian — that is, that the covariance matrix of the data C has all information.
In particular, we assume Eq. (61)

L =
1

(2π)n/2| detC|1/2 exp

[
−1

2
(d− d̄)Ti C

−1
ij (d− d̄)j

]
(65)

5You will notice that Fisher matrix is the negative of the Hessian of the log likelihood.
6As far as I know! To impress me greatly, work out the Fisher matrix for e.g. the case when the likelihood is assumed

to be something different — e.g. an approximation to the top-hat (i.e. flat in an interval). Might be hard.
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where di are the data (and d̄i is the mean for each i) and Cij is the covariance. Then you could
show (exercise!) that the Fisher matrix evaluates to

Fij =
1

2
Tr[C−1C,iC

−1C,j] + d̄T,i C
−1d̄,j (66)

where ,i is partial derivative with respect to pi.

Fisher matrix as an estimate of parameter errors. Most of the time, Fisher matrix
users rely on the Cramer-Rao inequality, which says that an error in a cosmological parameter
pi will be greater or equal to the corresponding Fisher matrix element

σ(pi) ≥





√
(F−1)ii (marginalized)

1/
√
Fii (unmarginalized)

(67)

where ”marginalized” is the uncertainty marginalized over all other N − 1 parameters, while the
”unmarginalized” case is when you ignore the other parameters, assuming them effectively fixed
and known. Note that the marginalized case has inverse of F which lets the parameters ”talk to
each other” about degeneracies. Most often in cosmology we are interested in the marginalized
errors; the unmarginalized ones are often much larger and not practically achievable.

So while the Cramer-Rao just tells us about the best possible error (so using the best possible
estimator etc), we often just assume that it gives the error from data of the given quality.

Examples. Let us give some examples of the expressions for probe-specific Fisher matrices.
For type Ia supernova observations, the covariance matrix of SNe doesn’t depend on cos-

mological parameters, and in fact it’s often taken to be constant (remember, Cij → σ2
mδij with

σm ∼ 0.15 mag). So then

F SNe
ij =

NSNe∑

n=1

1

σ2
m

∂m(zn)

∂pi

∂m(zn)

∂pj
(68)

where m(z) = m(z,ΩM ,ΩΛ,M...) is the theoretically expected apparent magnitude. Notice that,
if you had a full off-diagonal covariance matrix Cij that is still independent of the cosmological
parameters, the equation above would generalize trivially. For the cluster counts the simple-
minded equation is similar; let Nk be number of clusters in the kth bin and O(z) be an observable
(say, SZ flux), then

F clus
ij =

Q∑

k=1

Nk

σO(zk)2

∂O(zk)

∂θi

∂O(zk)

∂θj
(69)

Now consider a case of measurements of the CMB (or weak lensing) power spectrum where
the mean (temperature or shear) is zero and doesn’t depend on cosmology, but the covariance
carries all cosmological information. Then you can show that

FWL
ij =

∑

`

∂C

∂pi
Cov−1 ∂C

∂pj
, (70)

where Cov−1 is the inverse of the covariance matrix between the observed power spectra whose
elements are given by

Cov
[
Cκ
ij(`), C

κ
kl(`)

]
=

δ``′

(2`+ 1) fsky ∆`

[
Cκ
ik(`)C

κ
jl(`) + Cκ

il(`)C
κ
jk(`)

]
. (71)
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Figure 10: Illustration of forecast constraints on dark energy parameters, taken from the Frieman,
Turner & Huterer review of DE. All contours have been computed using the Fisher matrix. Note that
the contours are by definition ellipses, and one (Planck) is nearly completely degenerate — meaning,
long.

where Cκ
kl(`) is the covariance of convergence κ between galaxies in the kth and lth redshift bin,

on scales corresponding to a multipole bin centered at ` with width ∆`, in a survey covering fsky

fraction of the sky. You can tell by eyeballing this covariance-of-covariance four-point correlation
function that it was computed using Wick’s theorem, that is, assuming Gaussianity of C.

Marginalization over parameters. If you have, say, N , cosmological parameters, how do
you marginalize over N−M of them to be left with a desired joint constraints on M parameters?
This is easy:

• Calculate the full N ×N matrix F

• Invert it to get F−1

• Take the desired M ×M subset of F−1, and call it G−1 note that this matrix is M dimen-
sional

• Invert G−1 to get G

and voilà — the matrix G is the projected Fisher matrix onto the M -dimensional space. That
was easy!

Fisher ellipses. How do you plot the Fisher matrix contour? To plot a 2D ellipse, you first
want to project down to that space, and be left with a marginalized 2x2 Fisher matrix, call it
G. The equation for the 2D ellipse is

G11p
2
1 +G12p1p2 +G22p

2
2 =

1

f
(72)

where f = 0.434 for a 68% CL ellipse, and f = 0.167 for a 95% ellipse (these numbers can easily
be calculated using Gaussian statistics).
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The Fisher ellipse are also show how much information is carried by the data on the pa-
rameters — the smaller the ellipse, the more information. More generally, the volume of an
n-dimensional ellipsoid is

Volume ∝ (detF )−1/2 . (73)

You can find this useful if you are estimating relative amounts of information in surveys, etc.

Fisher bias. Another great application of the Fisher matrix is to calculate the bias in
parameters pi given biases in the observables. This can be derived easily again assuming the
same Gaussian distribution in the data; the result (for weak lensing) is

δpi = F−1
ij

∑

`

[
Cκ
α(`)− C̄κ

α(`)
]

Cov−1
[
C̄κ
α(`), C̄κ

β (`)
] ∂C̄κ

β (`)

∂pj
, (74)

where [C̄κ
α(`), C̄κ

β (`)] is the bias in the “observable” shear covariance due to any reason.
Perhaps a simpler example would be that for SNeIa, where the bias in the parameters takes

the form

δpi = F−1
ij

∑

n

1

σ2
m

[m(zn)− m̄(zn)]
∂m̄(zn)

∂pj
(75)

where [m(zn)− m̄(zn)] is the bias in the observed apparent magnitudes.
The bias formula is extremely useful if you would like to see what effect on cosmological

parameter errors an arbitrary systematic effect makes. So, given some biases in the observable
quantities, for example [Cκ

α(`) − C̄κ
α(`)] in Eq. (74), you can find biases in the cosmological

parameters δpi. Then you can compare those biases with the statistical errors in the cosmo-
logical parameters σ(pi) and impose requirements on the control of your systematic effect so
that |δpi|/σ(pi) is no larger than some threshold, say 0.3 (corresponding to < 30% bias in the
parameters). See the paper by Huterer & Takada (2006) for application to how well theoretical
prediction for the power spectrum P (k) needs to be know in order not to “mess up” cosmological
parameter determinations.
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