

Azores School on

Observational Cosmology

Properties of type Ia Supernovae and cosmological applications

Comparison between SNLS / SNFactory observed spectra and models

Flora CELLIER-HOLZEM

cellier@lpnhe.in2p3.fr

PhD Student at LPNHE (Paris) - Supervisor : Christophe BALLAND

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

- Cosmological context and aim
- SNela formation models :W7 and DD25
- Comparison between SNLS observations and synthetic spectra
- The use of SNFactory data to continue and improve the analysis
- Conclusion and Future

Cosmological Context and Aim

Context : The use of type la supernovae (SNela) : the accelerated expansion of the universe

To reduce systematics and standardize SNela : better comprehension of SNela and their properties

Cosmological Context and Aim

Context : The use of type la supernovae (SNela) : the accelerated expansion of the universe

To reduce systematics and standardize SNela : better comprehension of SNela and their properties

Method : comparison of SNela observed spectra from SuperNova Legacy Survey (SNLS) and SNFactory (SNF) with the predictions of various supernovae formation models (W7, Delayed Detonation models)

Aim : to evaluate how observations can discriminate models, in order to constrain and improve them

- Cosmological context and aim
- SNela formation models :W7 and DD25
- Comparison between SNLS observations and synthetic spectra
- The use of SNFactory data to continue and improve the analysis
- Conclusion and Future

SNela formation models :W7 and DD25

SNela formation models :W7 and DD25

SNela formation models :W7 and DD25

- Cosmological context and aim
- SNela formation models :W7 and DD25
- Comparison between SNLS observations and synthetic spectra
- The use of SNFactory data to continue and improve the analysis
- Conclusion and Future

Sample of SNLS observed spectra

SNLS Supe

SuperNova Legacy Survey

- Aim : redshift (0.15 < z < 1.1) and distance measurement of SNela to build a Hubble diagram to constrain cosmological parameters
- **When** ? 2003 2008

Method :

Sample of SNLS observed spectra

Redshift distribution for observed spectra

Phase distribution for observed spectra

SNLS observations vs simulations

09-03-2011

Models discrimination by observed data ?

Hypothesis testing : models are equivalent to reproduce data

► Method : $F = \frac{\chi_{\nu 1}^2}{\chi_{\nu 2}^2}$ follows a *F*-*Test* probability law • P(F) ≈ 1 : true → can not discriminate models • P(F) « 1 : false → one of these models is favoured

► In practice : selection of spectra for which P(F) < 5%

 \rightarrow for 21 spectra the discrimination of the models by the data is significant

 \rightarrow 2 subsamples for W7 or DD25 best fits : Do they represent different populations of SNela ?

	M_B	s	C	type de l'hôte
spectres)	-19.20 ± 0.04	1.012 ± 0.006	-0.021 ± 0.018	précoce 50% - tardif 50%
spectres)	-19.30 ± 0.04	1.047 ± 0.007	0.003 ± 0.021	tardif 80%

Models discrimination by observed data ?

Hypothesis testing : models are equivalent to reproduce data

► Method : $F = \frac{\chi_{\nu 1}^2}{\chi_{\nu 2}^2}$ follows a *F*-*Test* probability law • P(F) ≈ 1 : true → can not discriminate models • P(F) « 1 : false → one of these models is favoured

► In practice : selection of spectra for which P(F) < 5%

 \rightarrow for 21 spectra the discrimination of the models by the data is significant

 \rightarrow 2 subsamples for W7 or DD25 best fits : Do they represent different populations of SNela ?

→ comparison of average photometric properties :

Why a model is favoured by the data ?

Most of the differences can be attributed to the Calcium feature ($\lambda \approx 3700$ Å)

 \rightarrow equivalent width of Ca (EW Ca) calculation

EW Ca for W7 and DD25 spectra

Why a model is favoured by the data ?

Most of the differences can be attributed to the Calcium feature ($\lambda \approx 3700$ Å)

 \mapsto equivalent width of Ca (EW Ca) calculation

Earlier phases : equivalent width of Ca (EW Ca) for W7 spectra is too small compare to the data

\rightarrow DD25 is favoured

Postmaximum phases : EW Ca for DD25 spectra is too big compare to the data

\mapsto W7 is favoured

- Cosmological context and aim
- SNela formation models :W7 and DD25
- Comparison between SNLS observations and synthetic spectra
- The use of SNFactory data to continue and improve the analysis
- Conclusion and Future

SNFactory data to continue the analysis

- > Aim : Measure low-redshift (0.03 < z < 0.08) SNela to complete the Hubble diagram and to better understand SNela properties
- ► When ? 2004 now
- Method : detection of SNela candidates by PTF (Palomar Transient Factory) telescope (California)
 - spectro-photometric follow-up with SNIF (Supernovae Integral-Field Spectrograph) on the UH88 telescop (Hawai)
 - → measures time series (spectra for each SN starting 1-2 weeks before peak brightness and continuing several weeks after this peak) and calculates light-curves

SNFactory data to continue the analysis

- > Aim : Measure low-redshift (0.03 < z < 0.08) SNela to complete the Hubble diagram and to better understand SNela properties
- ► When ? 2004 now
- Method : detection of SNela candidates by PTF (Palomar Transient Factory) telescope (California)
 - spectro-photometric follow-up with SNIF (Supernovae Integral-Field Spectrograph) on the UH88 telescop (Hawaï)
 - → measures time series (spectra for each SN starting I-2 weeks before peak brightness and continuing several weeks after this peak) and calculates light-curves

SNF observations vs simulations

SNF20061111 : z = 0.069 / phase = 0.16 days

Preliminary

SNF20061111 and 16 days DD25 spectra

SNF20080920 : z = 0.040 / phase = -1.23 days

Preliminary

Preliminary Model discrimination with SNF data?

> SNF data around maximum of luminosity : same analysis with F-Test and cut when P(F) < 5%

- \rightarrow for 49 spectra the discrimination is significant between the models
- \rightarrow 2 subsamples for W7 or DD25 best fits : W7 \rightarrow 31 spectra

• DD25 🔿 18 spectra

comparison of average photometric properties : ongoing analysis

Preliminary

Model discrimination with SNF data ?

- > SNF data around maximum of luminosity : same analysis with F-Test and cut when P(F) < 5%
 - \rightarrow for 49 spectra the discrimination is significant between the models
 - \rightarrow 2 subsamples for W7 or DD25 best fits : W7 \rightarrow 31 spectra

• DD25 → 18 spectra

comparison of average photometric properties : ongoing analysis

Time evolution of the 2 subsamples size :

► EW Ca :

EW Ca for the two observed subsamples around 0 days

same results as SNLS analysis : DD25 is favoured by ealier phases and W7 by postmaximum phases
→ can be attributed to the Calcium feature and EW Ca value

Flora CELLIER-HOLZEM - Azores School on Observational Cosmology

Preliminary

Conclusion and Future

SNLS / SNF analysis : data have the power to disciminate models

spectral differences between models (Call ~3700Å)

- identify and understand the origine
- make the link between these differences and the physical properties of SNela

Continue this analysis with low-redshift data : SNfactory

- compare time evolution of observed and synthetic spectra
- investigate others avenues and compare with high-redshift

Aim : improve the models, reproduce the differences between SNela and understand their physical properties for a better calibration of SNela for cosmological works

Conclusion and Future

SNLS / SNF analysis : data have the power to disciminate models

spectral differences between models (Call ~3700Å)

- identify and understand the origine
- make the link between these differences and the physical properties of SNela

Continue this analysis with low-redshift data : SNfactory

- compare time evolution of observed and synthetic spectra
- investigate others avenues and compare with high-redshift

Aim : improve the models, reproduce the differences between SNela and understand their physical properties for a better calibration of SNela for cosmological works

Thanks for your attention !