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Local non-Gaussianity

Gaussianity

Standard inflationary model 7→ Gaussian distribution of
the anisotropies

Non-Gaussianity

Any deviation from normal probability distribution. Different
processes can show different deviations.

local fnl parameter

φ = φL + fNL

h
φ2
L− < φ2

L >
i
⇒ ∆T

T
= F (φ, fNL).

Third order moments, as for example the bispectrum, are linearly proportional to fnl.
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⇒ ∆T

T
= F (φ, fNL).

Third order moments, as for example the bispectrum, are linearly proportional to fnl.

Very weak signal!

Method’s efficiency:

in terms of accuracy = bispectrum (Smith et al.

2009, Komatsu et al.2011, SMHW Curto et al.

2011a,b)

CPU time (SMHW Curto et al. 2011a,b)

Aim of this work

We want to show that using neural networks we

are able to get equivalent results as the ones

obtained through χ2 minimization, avoiding C

estimation and invertion
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Estimators

REAL DATA

fNL estimators get more complicated when including the mask and anisoptropic noise.

http://map.gsfc.nasa.gov/

The optimal estimator has been

proposed by Creminelli et al. (2006)

and succesfully computed by Smith et

al. (2009) and Komatsu et al.(2011)

for WMAP-5year and WMAP-7year

data, giving the best constraints until

the moment. −10 < fNL < 74.

SMHW analysis using simulations have also found similar results (Curto et al. 2011)

−16 < fNL < 76.

These methods are computationally demanding. The covariance matrix (non diagonal in the real

case) and its inverse has to be estimated.

We want to bypass this last step using neural networks.
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Neural networks

nodes

yk =
X
j

wkjhj + θk,

where hj is

hj = tanh(
X
i

wjixi) + θj

yk =
X
j

wkj

0@tanh(
X
i

wjixi) + θj

1A + θk

Supervised training for a feedforward network

We train the network with a known set of inputs and outputs, xt and yt . We choose an optimization function (Ex. mse,rmse,χ2 ,. . . ) .

The optimization function is only dependent of the network parameters.

Err =
1

2

X
t,k

(y(net),t
k

− y(t)
k

)2

minimize this function (using conjugates gradient methods, gradient descent method, etc.)

We have used a code developed in Cambridge (Gull and Skilling 1999) with Q = αS − χ2 , where S is the entropy (Gull & Daniell
1978, Skilling 1984). Following the maximum entropy trajectory to find the optimal solution. In any case we need to find wlm and θn

7→ yk ∼ y
real
k .
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Neural Network classifier

pk =
eykX
k

eyk
χ =

X
k

pk ln p
(net)
k

Training

We need to know how many classes we want and what they represent

Supervised training requires known ~xt and ~yt.

Inputs need to be the characteristic properties of the objects we want to differentiate

Ex. We want to classify apples and oranges.

1 we need to have a sample of these two fruits, for example 100 apples and oranges.

2 we choose the best properties to differenciate them, ex: color, acidity, texture. . .

3 we introduce this values to the network.

color (orangeness) acidity bumpy texture Class orange Class apple

0.9 0.8 0.3 1 0
0.1 0.3 0.01 0 1
0.1 0.8 0.02 0 1
. . . . . . . . . . . . . . .
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~x=(orangeness,acidity,bumpyness)
~y=(Porange,Papple)

After the training using N fruits
we will get the weights and biases
that should be able to generalize
the problem. We can put the
properties of any orange / apple
and the network ouputs will be
the probablility of belonging to
each class.

Azores Obervational Cosmology School fnl constraints with neural networks 6 / 15



Introduction
Neural networks

Application in non-Gaussianity analysis

In our case we want to know, given a classification of levels of non-Gaussianity, in
which level is our data.

1 Sample: Gaussian and non-Gaussian simulated maps with different values of fNL.

alm = a
(G)
lm + fNLa

(NG)
lm

(Elsner & Wandelt, http://planck.mpa-garching.mpg.de/cmb/fnl-simulations)

2 Characteristic properties: cubic statistics of the wavelet coefficients
Sjkl =

X
i

wjwkwl

Npix

7→ 680 inputs

3 Classes: Different levels of non-Gaussianity. (ex. −100 < fNL <= −80 class 0,
−80 < fNL <= −60 class 1,. . . ) 7→ 9 classes

4 After training and testing the network gives the probability of an input vector
(statistics of the CMB map) to belong at each class pi.
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Neural Network classifier

If we do that for 1000 simulations with same fnl, we
can compute the bias and dispersion of the
estimator 7→ the efficiency of the method.

We can compute fNL for a given
map as:

f̂NL =
X
i

fnl
(c)
i × pi

Problems

Working with repeated alm realizations makes overfitting very likely.

We detect this when the testing and the training set have divergent behaviour.
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Results

Stopping at the moment where the overfitting
starts

True positives rate =
Right classified inputs

Total of inputs

Checking how affects number of hidden nodes and number of inputs
to train

Dispersion computed for Ntest = 1000. Ntrain = 5000.
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Results

Distribution of f̂NL

No significant bias. Edge problem for large fNL
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Results

f̂NLdata σ(f̂NL) < f̂NLgauss > P2,5 P97,5

SMHW (NN) 19 22 -1 -43 42

SMHW (WLS)
Curto et al. 2011b

32 21 0 -42 46

HW (NN) -12 33 -1 -66 63

HW (WLS)
Casaponsa et al. 2011

6 34 1 -68 67

Results obtained with neural networks (NN) and weighted least squares (WLS). f̂NLdata is the best fitting value for V+W WMAP

data, < f̂NLgauss > and σ(f̂NL) are the expected value and the standard deviation for Gaussian simulations. P2,5 and P97,5
represent the percentile values at 95 % confidence level of f̂NL for Gaussian realizations.
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Conclusions

Neural network estimator of fNL using wavelets coefficients gives same results
avoiding the inversion of the covariance matrix.

Neural network ure seful to solve many to one problems.

Neural networks might be useful in other cases where matrix invertions are
involved.

We have to be careful with overfitting and network architecture.

Once the network is trained (in this specific case no more than 1 minute)
generalized results are immediate. Point sources, assymetries, etc. can be
calculated if simulations available.
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Thanks
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Results

Binned bispectrum preliminary results

Keep adding simulations to see how it evolves. . .

Azores Obervational Cosmology School fnl constraints with neural networks 14 / 15



Introduction
Neural networks

Application in non-Gaussianity analysis

Training the network

Supervised training for a feedforward network

We train the network with a known set of inputs and outputs, xt and yt . The optimization function is only
dependent of the network parameters.

We have used a code based on the MEMSYS package developed by Gull and Skilling 1999 with Q = αS − χ2,
where S is the entropy (Gull & Daniell 1978, Skilling 1984). And followed the maximum entropy trajectory to find

the optimal solution. In any case we need to find wlm and θn 7→ yk ∼ yrealk .

Smax

χmin

α ∼ ∞

α ∼ 0
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