Dark Energy Theory and Observations

Bruce Bassett

Outline of the Lecture

- Some 'unusual' evidence for acceleration
- Dangers, caveats and lessons learned
- Some interesting theoretical models
- Challenges for the future: a case study

FLRW Background Basics

$$\left(\frac{\dot{a}}{a}\right)^2 = 8\pi G\rho - \frac{K}{a^2}$$

Positive Energy

$$\frac{\ddot{a}}{a} = -4\pi G(\rho + 3p)$$

Weak Energy Condition

Strong Energy Condition

1/E for Flat ΛCDM

Distances

$$d_L(z) = \frac{c(1+z)}{H_0\sqrt{-\Omega_k}} \sin\left(\sqrt{-\Omega_k} \int_0^z \frac{dz'}{E(z')}\right)$$

Distance Duality

$$d_L(z) = (1+z)^2 d_A(z)$$

astro-ph/0312443

• 1997

Hableh Royalts Using (272500 \$ Discout 900, ally 4 das 4.14- -10-40 do dys Sink M.a. Or Min U.O. -Ny 12 T S.O. .It 27 10.0 .M 30 15.0 .23 35 15.0 .24 37 20.0 .24 37 -5.0 .6 8 16= 63.9 all B&V -10++40 Spark 0= . 20 mm 81 20 3.20 20--5.215 elliptich O= .11 mm 6 for SRA =0 16=64.4 Rm= -36 +.18 -9+1 210 for JI1=0, m 234.5 get and was H=63.6 , Run= -28 + .20 -16

A. Riess

Exercise Race

You measure a SNIa at z=1 with μ = 43.8. At what confidence level is the flat CDM model (Λ=0) ruled out if σ = 0.1 mag?

$$d_L(z) = c(1+z) \int \frac{dz'}{H(z')}$$
$$\mu(z) = 5\log_{10} \left(\frac{d_L(z)}{Mpc}\right) + 25$$

$$\chi^2 = \sum_i \left(\frac{t_i - d_i}{\sigma_i}\right)^2$$

How far have we come since 1998?

Riess *et al,* 1998

Blake et al, 2011

Angular Diameter Distances - BAO

Blake et al, 2011

Blake et al, 2011

Age of the Universe

• Various objects suggest the universe is very old (> 12 Gyr)

$$t_0 = \int_0^{t_0} dt = -\int_\infty^0 \frac{dz}{(1+z)H} = H_0^{-1} \int_0^\infty \frac{dz}{E(z)(1+z)}$$

- This implies at least one of:
 - low H_0
 - low $\Omega_{\rm tot}$
 - something that suppresses E(z) at low redshift.
 - Inhomogeneous universe (bang-time is a free function)
- Lead to claims around 1995 that either the Universe has a large cosmological constant or H₀ is small...

THE COSMOLOGICAL CONSTANT IS BACK

Lawrence M. Krauss¹ and Michael S. Turner^{2,3}

¹Departments of Physics and Astronomy Case Western Reserve University Cleveland, OH 44106-7079

²Departments of Physics and of Astronomy & Astrophysics Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637-1433

³NASA/Fermilab Astrophysics Center Fermi National Accelerator Laboratory, Batavia, IL 60510-0500

(submitted to Gravity Research Foundation Essay Competition)

SUMMARY

A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges—and opportunities—that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.

FERMILAB–Pub–94/173-A astro-ph/yymmnnn submitted to Nature

THE CASE FOR A HUBBLE CONSTANT OF $30 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$

CMB lensing

 Smaller 4-point lensing function in the CMB than expected from a flat, decelerating universe

- Hence either:
 - acceleration
 - Other suppression
 of growth

A New Alcock-Paczynski Test

• Use the Copernican Principle:

The angles between us and pairs of other galaxies should be uniformly distributed in real space...

Marinoni and Buzzi, 2010

• Very early days: See the discussion and extension in arXiv: 1108.0932

Dangers, Caveats and Lessons

J. Huchra

Sting in the Posterior

 How should you use BAO results in your cosmological analysis?

If we only detect
something at no, you
cant draw any new
conclusions at more then no.

Arxiv: 1005.1664

Kazin et al, 2009

Arxiv: 1005.1664

What happens to SDSS-like BAO Contours?

• Big effect on the >99% confidence intervals. Must be included in any analysis.

- The Einstein equations couple geometry only to the total stress tensor, $T_{\mu\nu}$
- In 1916 that was no problem: photons, electrons & something else...

But what does this mean for our knowledge of dark matter and dark energy today?

We actually know 'nothing' about $\Omega_{\rm M}$

- But doesn't $\Omega_{M}=0.281\pm0.026$ from Constitution + BAO, and didn't Alessandro argue that we have a 23 σ detection of dark matter from the CMB?
- Yes, but as he pointed out, it assumes a model prior:
 ΛCDM
- What happens if we drop the Λ assumption?

Degeneracy

Even with perfect distance measurements there is a perfect degeneracy between the curvature (Ω_k) and w(z) (Weinberg, '73)

$$d_{L}(z) = \frac{(1+z)}{H_{0}\sqrt{-\Omega_{k}}} \sin\left(H_{0}\sqrt{-\Omega_{k}}\int\frac{dz'}{H(z')}\right)$$
$$\{d_{L}(z_{i})\} \rightarrow \{w(z_{i}),\Omega_{k}\}$$
$$N \qquad N+1$$

• You must assume you know one of the two...(Ned Wright)

Data Set

$$\Omega_K$$

 WMAP + h = 0.72 ± 0.0
 $-0.003^{+0.013}_{-0.017}$

 Spergel et al, WMAP3

Or you need H(z) independently of distances:

$$\Omega_{k} = \frac{\left[H(z)D'(z)\right]^{2} - 1}{\left[H_{0}D(z)\right]^{2}}$$

Testing the Copernican Principle

• Spherically symmetric LTB models can fit any redshift-distance relation trivially.

Mustapha et al, 97

CP-II

• Any conformally-FLRW metric will have an exactly isotropic CMB for all observers

 If observers are moving non-geodesically, all observers can see an isotropic CMB (Hence the SZ effect is no use as a test)

Barrett and Clarkson, 2000

CP-III

• Fortunately there is a general test of FLRW geometry independent of General Relativity:

Clarkson, BB, Lui 09

An interesting model you may not have heard of...

Dark Goo – Imperfect Fluid

• arXiv:1107.1503

$$T^{\mu
u}_{
m viscous} = T^{\mu
u}_{
m perfect} - \zeta (g^{\mu
u} + U^{\mu}U^{
u}) D_{\gamma}U^{\gamma}$$

$$p_{\rm eff} = p - 3\zeta \dot{a}/a$$

Challenges for the future: A Case Study

- LSST will find about 10⁵ SNIa every year
- How can we deal with contamination from Type Ibc and II supernovae?
- No analysis until now has purely used photometric supernova data (see also Heather's talk today)

SNIa Probabilities from light curves

Simulations and real data

optimistic: 37.5k SNe (25k type Ia) satisfies BEAMS assumptions

realistic:

5.4k SNe (1.3k type Ia) simulated lightcurves run through analysis pipeline real data (SDSS-II): 792 SNe (? type Ia) based on 3 seasons all redshifts known

Hlozek et al., SDSS-II, 2011

SDSS-II 3-year data

 $P(\theta|D) = \prod_{i} [P_{i}^{i} P(\theta|D, Ia) + (1 - P_{i}^{i}) P(\theta|D, non-Ia)]$

3-year SDSS-II supernova data:

792 SNe of which 297 spectroscopically confirmed Ia.

Hlozek et al, SDSS-II, 2011

OWN INTERNATIONAL

ORGANISED BY AIMS, ICTP & PI

The Cape Town International Cosmology School will be held at the Stellenbosch Institute for Advanced Studies in Stellenbosch from the 15-28 January 2012. The school will consist of lectures, tutorials and project work.

15 - 28 January 2012

INVITED SPEAKERS

Niayesh Afshordi (PI) Bruce Bassett (AIMS/SAAO/UCT) Chris Clarkson (UCT) Sergio Colafrancesco (INAF/Rome/ Wits) Paolo Creminelli (ICTP) George Ellis (UCT) Andreas Faltenbacher (UWC) Ariel Goobar (Stockholm) Alan Heavens (ROE) Lam Hui (Columbia) Matt Jarvis (Herts/UWC) Roy Maartens (UWC/ICG) Kavi Moodley (UKZN, tbc) Robert Nichol (ICG) Ravi Sheth (ICTP) Matias Zaldarriaga (IAS, Princeton)

TOPICS

Cosmic Microwave Background Inflation Supernovae, Baryon Acoustic Oscillations Cosmic Acceleration Large Scale Structure Dark Matter and its Detection **Bayesian Statistics** Multi-Wavelength Cosmology Future Surveys Testing Homogeneity Modified Gravity Advanced Topics in Cosmology

SOC & LOC

Scientific Organising Committee Bruce Bassett (AIMS/SAAO/UCT) Paolo Creminelli (ICTP) Roy Maartens (UWC/ICG) Carolina Ödman (AIMS/NEI) Ravi Sheth (ICTP)

Local Organising Committee Rene January (AIMS) Michelle Knights (AIMS/UCT)

PERIMETER

INSTITUTE

SOUTH AFRICA

REGISTRATION

www.cosmology.org.za/school

Registration closes 30 September 2011

