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What is ALMA?

Europe-North America bilateral project
64 x 12m antenna’s; 7238 m? total area
Frequency range 30-900 GHz (7 — 0.35 mm)

Configurations from 150m to 14km, with
spatial resolution down to 0.01”

High (5000m) dry site in northern Chile




Radiation at mm wavelengths

e Continuum: cold dust at
10-100 K; steep
spectrum with v3

* Lines: pure rotational
transitions of molecules

ENERGY (K}

ALMA probes cold molecular
clouds of gas and dust




B68 dark cloud
Optical Infrared
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Such obscured star-forming regions can be probed directly

at mm wavelengths
Alves et al. 2001




ALMA science drivers

 Main scientific themes:
— Formation and origin of high-z galaxies
— Birth of stars and planetary systems

 ALMA can probe obscured regions (A, >100
mag), in contrast with optical telescopes

 Combination of high angular resolution (0.01°’-
1°’) with high sensitivity will allow applications
in every branch of astronomy




Pioneering Millimeter Arrays

CARMA = OVRO + BIMA

IRAM
Plateau de Bure

National Asitronomical Observatory of Japan

These arrays Nobeyama Radio Observatory

are small and at & e AEEAy
(relatively) low S AU
elevations

Complemented
by large single
dish telescopes




Questions about the Early Universe
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- When did the first stars form => reionization?
- When did elliptical galaxies form? P. Shaver



ALMA and the deep Universe

* Evidence for large population of dusty
galaxies:
— Far-IR background
— Submm continuum sources
— High-z CO




Recent developments in mm/submm astronomy
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Example: Lockmang850.1

Massive elliptical at z~3 in formation?
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Plateau de Bure 1.3 mm

Identifications are extremely faint or impossible
at optical/IR; redshift determination?

Lutz et al. 2001



CO in the quasar PSS 2322+1944
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Starting to study them...

CO 3-2 at z=2.8 CO rotation curve
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Genzel et al. 2003

M>4x10"1 M within 8 kpc => challenge for standard
hierarchical galaxy merger scenarios




Dust and CO at z=6.4!

Sloan survey
optical image

Contours: dust

Bertoldi et al. 2003

IRAM 30m MAMBO

=> Heavy elements formed shortly after Big Bang




Understanding galactic physics locally

Antennae galaxies

Image: HST
Contours: CO

Wilson et al. 1999

Strongest CO emission comes from optically invisible region!



ALMA can detect throughout the Universe:

— Starburst galaxy in minutes
— Milky-Way galaxy in hours

M8Z spectrum - 4 x 10" La
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ALMA as a redshift machine

* Distance between CO lines: 115 GHz/(1+z)
Av=8-16 GHz => a few settings are
sufficient to detect at least 1 CO line

* Driver for:

— Large collecting area
— Wide frequency coverage




Redshifted CO with frequency bands
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High Angular Resolution for Identifications

SCUBA resolution ALMA resolution

Hughes et al. (1998)

P. Shaver
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How are single stars created?

x1000
in scale

Cloud collapse

Planet formation Mature solar system

Scenario largely from indirect tracers Fig. by McCaughrean




ALMA & outflows from young stars:

Progress requires high resolution imaging

Current mm arrays can only image large
scale structures.

ALMA can study the outflows on
solar system size scales
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Some exoplanetary systems have Jupiter(s) at the
distance of Mercury/Venus!

How does this happen?

U And system

Our solar system

Jupiter




Star-Disk-Planet Systems

. R -0 | - | The answer lies in
Theory . - © " | the past, during
' B S the time when the
star and its
planets are being
assembled.

Stmulation G. Bryden Need ALMA observations!




Protoplanetary disks

Size disks
~1010 km =
2xSun-Pluto




Young disk in Taurus




ALMA and protoplanetary disks

Massive gas-rich disks  Mgas + dust)=0.01 M,,,,
t=few Myr
Planet building 1 gas + dust interstellar

phase

Tenuous debris disks M(dust)<1 M,,,q,
t>10 Myr

dust produced in situ

- Time scale for gas and dust dissipation?
- Physical structure disks (T, n, v, ....)

- Evidence for planet formation?

- Chemical evolution gas + dust



Example: Vega debris disk

Dust trapped in resonances due to unseen planet with few M, .2
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Disks around brown dwarfs

Example of synergy between facilities

Cha Hal
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-Brown dwarf with VLT

-Peak disk luminosity with Herschel (unresolved)
-Mass + image disk with ALMA



ALMA and protoplanetary disks

« ALMA can provide:

— Statistics on hundreds of pre-main sequence stars
down to 0.01 M, ., of cold dust at 100 pc

— High precision images and Kinematics of inner disk
down to 1 AU

* Driver for:
— Large collecting area
— Highest angular resolution
— High-resolution spectroscopy (<0.1 km/s)

Wolf et al. 2002



ALMA and the Solar System

ALMA will also revolutionize
our understanding of objects as
diverse as comets...

Mars Opposition - March 1997 HDO

... and planetary
atmospheres.

HST WFPC2- HST WFPC2- OVRO - Integrated HDO
Color composite! Blue filter (410 nm)! Emission (1.3 mm)?2
Surface features Cloud structure Water vapor distribution

1P, James (U. Toledo), T. Clancy (551), S. Lee (U. Colorado), and NASA 2 M. Gurwell (CfA), D. Muhleman (Caltech)

Source: G. Blake




Minor planets in solar system

e o

Pluto Quaoar Moon
2300 km 1250 km 3480 km 12760 km

Size Quaoar measured at mm wavelengths

Bertoldi et al. 2002




ALMA and Astrochemistry
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Based on Ehrenfreund & Charnley 2000

What are building blocks for live elsewhere in the Universe




Hot core associated with massive YSO
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Detection of DCO™ in a circumstellar disk
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DCO"/HCO"™=0.035 => gas in disks is cold with heavy depletions

Van Dishoeck et al. 2003



ALMA Level 1 science requirements

* The ability to detect CO or C'in a
normal galaxy like the Milky Way at z=3
in less than 24 hr

* The ability to image the gas Kinematics in
protostars and protoplanetary disks at a
distance of 150 pc

* The ability to provide precise images at
an angular resolution of 0.1”




ALMA overview

Europe-North America agreement signed
February 2003: 552 M Dollar total (Y2000)

64 x 12 m antenna’s; 7238 m? total area

30 -900 GHz (7 mm — 0.35 mm)

4 out of 10 receiver bands initially; 8 GHz BW
— Band 3: 84-119 GHz

— Band 6: 211-275 GHz

— Band 7: 275-370 GHz
— Band 9: 602-720 GHz

Correlator (2016 baselines; 16 GHz per antenna)
183 GHz Water Vapor Radiometers for phase cal




Atmospheric transmission on good day

Atmospheric transmission at Chajnantor, pwv = 0.5 mm
;
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ALMA overview (cont’d)

» High spatial resolution: (0.25”°/B,_ A,
— 0.08” at Imm with 3 km baselines
— 0.01” at 0.35 mm with 14 km baselines

* This corresponds to 1.5 AU in nearest star-
forming regions, 85 AU at Galactic Center, 1 pc
at Virgo

—>ALMA will be 10,000 times faster for continuum,

500 times faster for line data, and will see 50
times sharper than existing facilities!

ALMA will be unique




ASAC/ESAC

 ASAC: 5 from each side

— P. Cox, J. Richer, P. Schilke, L. Testi, E. van
Dishoeck

— C. Carilli, L. Mundy, P. Myers, J. Turner, C. Wilson
— Project scientists are ex-officio members
— 1 Chilean member, 3 Japanese observers

e New ESAC has members from each ESO
country (J. Yun from Portugal)

 ASAC/ESAC reports and minutes on Web




Science Operations:
Astronomers Perspective

Non-experts should be able to use ALMA

Dynamic scheduler to match observing
conditions

Reliable and consistent calibration:

— 1% at mm, few % at submm goal

Data public in timely fashion




ALMA Operations

Array Operations Site Chajnantor
Operations Support Facility San Pedro
Central Office Santiago
Regional Support Centers NA/EU
Development / Upgrades NA/EU

Subject to changes by ALMA Board!




ALMA Location
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Chajnantor

ASAC at center of ALMA array
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Main Functions AOS

* Antenna re-configuration (continuous)
* Instrument module exchange
* Security of site




Array Operations Site
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* Antenna Array “~.

* |nterconnections

 Antenna Maintenance
Hangar
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The ALMA Camera’ concept:

Configurations evolve smoothly from
compact (150m) to extended (14km)

Compact array: as

densely packed as

possible, with minimal | |
shadowing and still ®
allowing all antennas to .:':'.. ..:
be accessed by the

transporter




Current Transporter Concepts

ALMA Antenna IPT ALMA Transporier Requiremenis Review
J & Engsley &8 M Eraus Olelober 24, 2002
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Location OSF
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Main functions OSF:
near San Pedro

Array scheduling and operations
Quick-look data reduction

Maintenance and repair antennas
Maintenance and repair instrumentation
Administration, safety




Dynamic Scheduler

 Dynamic scheduler selects programs
according to:
— Science rating

— Weather conditions: transparency, phase
rms, .... ( stringency’)

— Execution status
— Array configuration
— Partner parity




Transparency Variations

Annual variation

|
Chajnanter: I|Media11 225 GHz Zenith Optical Depth (T;%)

Diurnal variation

0.25

night

(4224

0.2

Taos

0.1

2”5 GHz zenith optical depth

1=0.05 corresponds to ~1 mm precipitable water vapor



Site Test Interferometer

11.198 GHz (Intelsat)
300 m baseline
36° el.




Phase Stability Variations

Annual variation

Chajnantor: Median EM3 Phase Fluctuations at Zenith
1000
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Transparency and
Phase Stability
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phase (degrees): 10 minute median

Median

Note tail in statistics of periods with good transparency
but large phase rms —> phase correction essential!




Main functions Central Office:
Santiago

Pipeline data reduction
Quality assessment
Production of archive
Business functions
Science offices




Science operations in practice

Phase I + 11 proposals through RSCs

— Powerful time estimator and end-to-end data
simulator —> scheduling blocks to OSF

Scheduler selects programs; assures
homogeneous + consistent calibration;
possibility of eavesdropping and "breakpoints’

Pipeline data reduction, quality control,
production of archive, VO compatible

— Complete data management system

Advanced data reduction at RSCs




Example: Vega debris disk

Dust trapped in resonances due to unseen planet?

Morth nfteet [aroewn)
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i

Simulation

Foxt offmd (oresoc)

10

—10

PdB 1mm data

Wilner et al.
2002

Use simulator to "observe’ model in same way as actual data



Regional Support Centers:
Core Functions

* Proposal handling

* User support for proposals and data
reduction beyond the standard pipeline
products

* Host of copy of archive

Core functions are controlled by ALMA Observatory




Regional Support Centers:
Additional Functions

* Advanced software and techniques (e.g.
large OTF maps)

* Training, summer schools, outreach
* Research funding,

Additional functions may differ between RSCs




Models for European RSC

True Center in single location

!

Central Node with distributed network <=

Favored by

1 Community

Virtual Center distributed throughout Europe




Central Node with network

* Strong Central Node for user support

* Development within distributed network,
to ensure optimal use of expertise in
European institutes

Community comments welcome!




Development / Upgrades

 New / upgrade instrumentation over lifetime of
array, e.g.:
— Additional receiver bands
— Second generation correlator
— Improved software

* To be done mostly at institutes in partner
countries, under contract from ESO

* Development funding included in operations
budget (~5 MEu/ year Europe)




Early Science observing:
>03 2007

Follows Commisioning and Science
Verification

Open to community through call for
proposals

Should demonstrate unique ALMA
capabilities to all astronomers

Provides feedback to ALMA operations

Operations with full array will start in 2012




Unique ALMA capabilities
for Early Science

Sensitivity: gain over existing facilities
once >6 antenna’s

Long baselines = high angular
resolution

High frequencies
Southern sky




Senzitiviiy {mily)

Early science sensitivities

Continuum {5 hours, 10)

- Band 2 {110 GHz)



Atacama Pathfinder EXperiment

Natamle 1™ MPIfR,
Sweden,

ESO

Copy of one prototype antenna installed on Chajnantor June 2003
Observations starting next year




Orion KL CISCO (Hz (v=1-0 5(1)) — Cont)

Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999




