

THE EUROPEAN ELT

- A project lead by ESO on behalf of 14 member states
 - 42m adaptive telescope with segmented primary based on a 5-mirror design
- In Phase B since Jan 2007
 - Goal of Phase B: Proposal for construction by 2010
- Schedule:
 - Detailed design phase until end 2010
 - External reviews: Mid-term (May 2009), construction (Sep 2010)
 - Start of construction: 2011
 - First light: 2019
- Cost
 - Telescope + 1st gen instruments: ~ 1 Billion Euro
 - Operations (incl new instruments, overheads): ~ 50 M€/year
- Resources
 - 2007-2009: 57.2 M€ (including 110 FTEs)
 - Supporting activities from FP6 (28.8 M€, concluded) & FP7 (6.1 M€, ongoing)

THE TASK

ESO's Strategic Principles ESO Council Resolution, Dec.2004

- Retention of European astronomical leadership into the era of Extremely Large Telescopes
- Assure completion of ALMA, and efficiently exploit its superb scientific capabilities
- Maintain VLT in world-leading position for another 10-15 years by continued upgrades
- Exploit unique capabilities of the VLTI
- Lead in the construction of an ELT on a competitive timescale

ELT effort re-oriented at the end of 2005 towards "the best affordable ELT Facility that can be built on a competitive timescale and with acceptable risks"

THE DRIVER

• Planets in other stellar systems

- -Imaging **and** spectroscopy
- -The quest for Earth-like exo-planets

Stellar populations

- In galaxies inaccessible today (e.g. ellipticals in Virgo cluster)
- –Across the whole history (i.e. extent) of the Universe

Cosmology

- -The first stars/galaxies
- -Direct measure of deceleration
- -Evolution of cosmic parameters
- -Dark matter, dark energy
- -Tests of GR around black holes

The unknown

-Open new parameter space

THE SCIENCE CASE: THREE PILLARS

- Contemporary science: Today's clever ideas in the DRM
- Synergy with other facilities:

Watching the Universe accelerate in real time

- · What is the Dark Energy?
- · E-ELT can measure acceleration directly, in real time
- · Fundamentally different probe (dynamical vs geometrical)
- · Weak signal: ~ cm/s/yr. Requires:
- · ELT (collecting area)
- · 20 year monitoring campaign
- · Ultra-high stability, high-resolution spectrograph (CODEX)

J. Liske et al., MNRAS, 2008 and Final DRM report

Cosmic Dynamics Experiment

$$\dot{z} = \frac{dz}{dt} = (1+z)H_0 - H(t_e)$$

Measuring the redshift drift requires:

- Many photons, high resolution, extremely stable spectrograph
- ~20 yr long spectroscopic monitoring campaign

Best place to observe the redshift drift: the Lyman- α forest.

Cosmic Dynamics Experiment $\dot{z} = \frac{dz}{dt} = (1+z) H_0 - H(t_e)$

$$\dot{z} = \frac{dz}{dt} = (1+z)H_0 - H(t_e)$$

Measuring the redshift drift requires:

- Many photons, high resolution, extremely stable spectrograph
- ~20 yr long spectroscopic monitoring campaign

Best place to observe the redshift drift: the Lyman- α forest.

Cosmic Dynamics Experiment

$$\dot{z} = \frac{dz}{dt} = (1+z)H_0 - H(t_e)$$

Measuring the redshift drift requires:

- Many photons, high resolution, extremely stable spectrograph
- ~20 yr long spectroscopic monitoring campaign

Best place to observe the redshift drift: the Lyman- α forest.

Cosmic Dynamics Experiment Simulations: $Q_N = 0.3, 0.7$ Shrinks with observing time and experiment duration 4000 hours over 20 years will $\dot{v} (h_{70} \text{ cm s}^{-1} \text{ yr}^{-1})$ -0.5 0 deliver any one of these sets of points. Different sets correspond to $\Delta t = 20 \text{ years}$ different target selection strategies.

AN AO MILESTONE: MAD

MCAO: 3 Guide stars at 2' K-band, FWHM: 100-120mas, Sr: >20% 0.7" seeing, Exposure 360 s

MCAO: 2 Guide "stars" (satellites Europa and Io) 2.14µm + 2.16µm filters 90 mas resolution (300 km at Jupiter)

+ES+ 0 +

AN AO MILESTONE: MAD

MCAO: 3 Guide stars at 2'
K-band, FWHM: 100-120mas, Sr: >20%
0.7" seeing, Exposure 360 s

MCAO: 2 Guide "stars" (satellites Europa and Io) 2.14µm + 2.16µm filters 90 mas resolution (300 km at Jupiter)

E-ELT TOP LEVEL REQUIREMENTS

- Diameter: ≥42m (area ≥ 1200 m²)
- Alt-Az, F/15 to F/18, fully steerable (0-360,0-90). Operational ZD: 0-70
- Adaptive telescope
- GLAO correction (≥ 5 arcmin, 90% sky, 80% time)
 - better than 2x FWHM improvement for median seeing conditions
- Post-focal: SCAO, MCAO, LTAO, ExAO, MOAO, ...
- Science field of view:
- 10 arcmin unvignetted. Diffraction limited by design
- 5 arcmin unobscured by guide probes
- Wavelength range: 0.3 24 μm
- Transmission @Nasmyth:
- -> 50% at >0.35 μm , >60 % at >0.4 μm , >70% at 0.7 μm , >80% at > 1 μm
- Focal stations
- Two Nasmyth (multiple instruments, including gravity invariant option)
- At least one Coudé
- Fixed instrumentation (fast switching: < 10 min same focus, < 20 otherwise)

PHASE B STATUS

- Site selected: Armazones
 - VLT and E-ELT as a single observatory
- Proposal for Construction nearly complete
- Most major contracts (FEEDs) concluded
 - Prototypes and breadboards being tested
 - Industrial reviews contracted
- Excellent field results at GTC and VLT (control system)
- Instrumentation Phase A studies concluded
 - Final reviews between Oct 2009 and Mar 2010
- Science
 - Design Reference Mission, Design Reference Science Plan.
- Observatory operations plan drafted
 - Daily activities (maint, calib etc) \rightarrow FTEs \rightarrow costs
 - Observing modes developed (based on VLT paradigm)

M4: 2 FEED contracts

- 1-m prototype units manufactured
- #1 integrated and polishing on board
- #2 integrated with thin shell
- Both suppliers making good progress
- Within the project schedule
- Inter-actuator stroke measured
- Both suppliers in the final stages of testing

THE M5 FIELD-STABILIZATION MIRROR

Scale 1 prototype electromechanical unit under testing

4 mirror studies "heavy" option considered

INFRASTRUCTURE

The infrastructure plan includes:

- 10 km of paved road
- 10 MWatts of local generated power
- Wind turbines
- Water capacity of 500 cubic metres
- Telecommunications in and out of the site
- Accommodation for 100 staff
- Control building and laboratories separated from the dome.
- Temporary accommodation during construction.

INSTRUMENTATION PHASE A STUDIES

ACRONYM (P.I.)	INSTRUMENT TYPE
EAGLE (J.G. Cuby)	Wide Field, Multi IFU NIR Spectrograph with MOAO
EPICS (M. Kasper)	Planet Imager and Spectrograph with XAO
MICADO (R. Genzel)	Diffraction-limited NIR Camera- AO assisted
HARMONI (N. Thatte)	Single Field, Wide Band Spectrograph - AO assisted
CODEX (L.Pasquini)	High Spectral Resolution, High Stability Visual Spectrograph
METIS (B. Brandl)	Mid Infrared Imager & Spectrograph -AO assisted
OPTIMOS (F.Hammer,- O.LeFevre)	Wide Field, Visual, MOS (fibre or slit-based)- AO assisted?
SIMPLE (L. Origlia)	High Spectral Resolution NIR Spectrograph -AO assisted
	POST-FOCAL AO MODULES
MAORY (E. Diolaiti)	Multi Conjugate AO module (high Strehl, field up to 2')
ATLAS (T. Fusco)	Laser Tomography AO Module (high Strehl, narrow field)

SIMPLE

