

) Science & Technology Facilities Council UK Astronomy Technology Centre

New Technologies for Astronomical Instrumentation

Colin Cunningham UK Astronomy Technology Centre Royal Observatory Edinburgh

Scope of talk

- Ground-based instrumentation
- Emphasis on Near Infrared (1-5µm)
- Not Interferometry

VISTA 64 Mpixel IR Camera

Why do we need New Technologies in Astronomy?

Open New Parameter Space > New Science

Disruptive Technology – changes how we do things

Reduce cost- make New Science affordable

Reduce time to reach Science Goal

Reduce Risk

Disruptive Technology

A new technology that has a serious impact on the status quo and changes the way people have been dealing with something, perhaps for decades

Disruptive Technology

A new technology that has a serious impact on the status quo and changes the way people have been dealing with something, perhaps for decades

Credit: LSST Corp. 5

What can we measure with Astronomical Instruments?

Probe the Universe by collecting photons:

- Photon emission
- Absorption
- Eclipses
- Gravitational lensing
- Angles astrometry
- Doppler shift > dynamics of galaxies > Dark Matter
- Measure properties of E-M radiation::
 - Intensity
 - Spatial
 - Temporal
 - Wavelength (Energy)
 - Amplitude & Phase
 - Polarisation
 - Orbital Angular Momentum?

Why is this so hard?

Evolution of Instrument Requirements

UKIRT: IRCAM 1 1986

VLT: KMOS 2011

Imaging

16 2kx2k Raytheon Arrays in VISTA

Imaging Challenges : Sensitivity

- Noise sources
 - Background Photon noise
 - Optical components
 - Sky
 - Source
 - Stray light
 - Detector noise
 - Interference
 - EMI
 - Cosmic rays
 - Microphonics
 - OH lines
 - Amplifier Noise
 - Digitisation

From P. Bely, Design and construction of large optical telescopes

Controlling Background Sources

- Conventiona Wisdom:
 - Control using cold stop
 - VISTA shows this can be done with careful baffle design

Controlling Background Sources

- Conventional Wisdom:
 - Control using cold stop
 - VISTA shows this can be done with careful baffle design

Challenges: Throughput

Minimise losses

- Minimise reflections at surfaces
- Reduce window, filter and lens absorption
- Avoid misalignment of apertures
- Allow for Diffraction
- Optimise image quality
- Use adaptive optics!
- Maximise detector quantum efficiency

High contrast imaging

Not just Images! Spectroscopy:

Not just Images! Spectroscopy:

Basic Spectrometer layout

entrance aperture/slit + collimator + dispersing component (if possible at a pupil)

KMOS - A practical example

The K-band multi-field spectrograph for ESO VLT

Extreme Aspherics can increase throughput and make instrument smaller

New Dispersing components

 Immersion gratings – allows more compact spectrometers – but surface finish and scattered light are issues

The long slit: strengths/weaknesses

- With typical scales of 0.2arsec/pxl and 2048 x 2048 pxl detectors, modern spectrometers have slit lengths of several arcmin => 'long' field
- In most cases much of slit 'unused' for science

Velocity Dispersion

Data courtesy UK Infrared Telescope, Tom Ray and Chris Davis

Solutions to long slit weakness

- Multi-object spectroscopy (MOS)
 - Optical fibres
 - Focal plane slit masks
- 3D (integral field) spectroscopy
 - Fibre bundles
 - Lenslet arrays
 - Image slicers
- Bring both together: Multi-IFU spectroscopy

1980: Roger Angel's Medusa

2010: Echidna on SUBARU FMOS

Multi-object slit spectroscopy

	ner († 1995) Mariel Constanting († 1995) Mariel Constant († 1995) Mariel Constant († 1995) Mariel Constant († 1995) Mariel Constant († 1995)	

An image of a field of stars and galaxies is used to set positions for slitlets in a mask... the multi-object slit mask is inserted at the telescope focal plane..... and spectra of the selected sources measured at the detector.

Images from the Gemini Multi-object Spectrograph GMOS

Slit Mechanisms

- UCLA building Keck NIR MOS instrument with Swiss CSEM slit mechanism
- first time they have gone to European procurement

Courtesy Ian McLean, UCLA

Programmable Slit Spectrometers: MOEMS Shutter arrays

NIRSPEC James Webb Space Telescope

Harvey Moseley, NASA Goddard

Programmable Slit Spectrometers: MOEMS Shutter arrays

Integral Field Spectroscopy

Techniques for 3D spectroscopy

Durham University AIG

Image Slicer

Multi-object Integral-Field Spectroscopy

Current Technology: Pick-Off Arms (VLT KMOS)

- Very hard to meet stability requirements for E-ELT
- Too complex and bulky for more than about 30 objects

EAGLE Concept

Multi Object Adaptive Optics

EAGLE for E-ELT

Astrophotonics

Fibre v. conventional spectrometer

The fibre array spectrometer has 5x the spectral resolution of the conventional dispersive spectrometer – or is 5x smaller Robert R. Thomson, Ajoy K. Kar, and Jeremy Allington-Smith Vol. 17, No. 3 / OPTICS EXPRESS

Photonic Fabrication Technologies

- Direct writing of 3D waveguides can
 - Simplify IR beam combiners for interferometry
 - Enable manufacture of integrated OH suppression using Bragg grating filters
 - Enable Miniature Spectrometers

NIR spectroscopy - the background

The OH emission spectrum:

- Lines are bright
 - 2500 photons per second per arcsec with an 8-m telescope, 1000 times typical target source flux
- Variable
- BUT, the continuum between them is very dark
 - o.1photons per second

OH spectrum from Rousselot et al. (2000, A&A, 354, 1134).

Bragg gratings for OH suppresion

Single mode fibre Bragg-gratings (FBGs) have been used to suppress OH fluorescence.

PIMMS: photonic integrated multimode microspectrograph

Bland-Hawthorn et al, 2010, Proc. of SPIE Vol. 7735 77350N-1

Fully integrated version

Detectors

- Needs:
 - Bigger, cheaper, better!
- E-ELT will need 60 -100 2kx2k IR arrays
- Lower noise would be good!
- James Webb Space Telescope shows how IR detector performance can be pushed by astronomy
 - But at high cost

16 2kx2k Raytheon Arrays in VISTA

High time resolution

On timescales of milliseconds

- study the optical emission from pulsars.
- optical analogue of the kilohertz quasi-periodic oscillations and related small-scale accretion phenomena found in X-ray binary stars (XRBs)

SPAD (Single Photon Avalanche Diode) Array Ecole Polytechnique Fédérale de Lausanne

Accretion processes in an XRB. Artwork by Catrina Liljegren, *Bild & Form*, Lund; ©Dainis Dravins, Lund Observatory.

Energy resolving detectors: STJs

 Superconducting Tunnel Junctions
 ESA's S-CAM

Detector	12x10 Ta/Al STJs	
Pixel size	33 x 33 µm²	
Fill factor	76%	
Plate scale	0.8"/pixel	
FOV	11"x9"	
Pass band	330-745 nm	
Maximum detection efficiency (@500nm)	30%	
λ/Δλ @ λ=500nm	8-11	
Event time resolution	~5 µs	
Operating temperature	285 mK	

Energy Resolving Detectors

- Transition Edge
 Superconducting Device
- Kinetic Induction
 Devices
- Superconducting
 Tunnelling Junction
- Distributed Read Out
 Imaging Device
- Superconducting
 Nanowires

SCUBA 2 450µm TES arrays

Ultimate, Ideal MOS Instrument?

- Tiled Micro-Mechanical MOS System (TiMMS)
 - Feeding 500 photonic spectrometers
- Or, build the photonic spectrometers into micro-robots?

Conclusions

- Next generation of instruments can be built with existing technology
- But, there are potentially better solutions
 - Photonic Devices
 - Robotics
 - Novel Gratings
 - Photon counting detectors
 - Ultimately energy sensitive

Thanks to the OPTICON Key Technology Network

Further Reading

- Special issue on Astrophotonics: Optics Express, Vol. 17, Issue 3, 2009
- Colin Cunningham 'Future Optical Technologies for Telescopes and Instruments' *Nature Photonics* 3, May 2009, 239-241
- Colin Cunningham 'Future Technologies for Optical and Infrared Telescopes and Instruments'. *Experimental Astronomy*, 2009, 26, 179-199
- Ian McLean 'Electronic Imaging in Astronomy: Detectors and Instrumentation' (Springer Praxis Books / Astronomy and Planetary Sciences), 2008

Dealing with Complexity: Systems Engineering

- Modern Ground-based instruments are increasingly complex – can't all be in one person's head!
- Need tools to control this complexity:
 - Requirements capture
 - Functional Analysis
 - Architectural Design
 - Interface definition and control
 - Performance Verification

Waterfall Diagram

52