oscrox: stellar oscillation code

Ian Roxburgh
Domain of applicability: adiabatic oscillations of spherical star: low £ modes

The oscillation equations

On linearising the equations of motion around the equilibrium model, taking all perturba-
tions o< Yp,,e™t where Yy, are spherical harmonics and w the angular frequency (w=27v),
the equations governing small amplitude adiabatic oscillations can be expressed in the form
(cf. Unno et al p.104)
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and &, p’, @ are the pertubations in radial displacement, Eulerian pressure and gravita-
tional potential. g, ¢, p, P, I'1, N? are the acceleration due to gravity, sound speed, den-
sity, pressure, adiabatic exponent and Brunt-Vaisala frequency in the equilibrium model.

Following Vorontsov (OSC689) we define new variables
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and introduce dimensionless variables z, p*, c*, n, g%, w* defined by
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On dropping the asterisks we obtain the equations in dimensionless form as
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Method of solution

The oscillations equations are a order homogeneous set which only have a solution
for a discrete set of eigenvalues wy,y: the oscillation frequencies. The equations are solved
using a shooting method with 4** order Runge-Kutta integration. For a given value of /
and a value of the frequency w, two independent solutions satisfying the surface boundary
conditions (y;1, y;2) are integrated in to a matching point z;. Likewise two independent
solutions satisfying the conditions of regularity at the centre (y;3, y;4) are integrated out
to zy. If w were an eigenfrequency these solutions would be continuous which requires that
D = det{y;;} = 0. In general this is not the case. Starting with a value of w we increment
w until D changes sign, and then use Newton-Raphson to converge on the eigenvalue. We
then increment w again until D again changes sign and converge in on the next eigenvalue.

4th

Input data from a stellar model

In principle the only data needed are the values of p,I'; on a mesh of radius, r;, and
the surface value of the pressure; all other variables can be calculated from this data. In
practice the code reads in G, M, R, dLro2 and the model variables
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If D,dLro2 are not avaiable they are calculated in an auxilliary subroutine

Mid points
For 4t* order Runge Kutta we need the structure variables g,c?,n2, p at the mid points

(iy1+m;)/2. These are evaluated by interpolation on z?2, either simple linear interpolation
or, if the model is smooth enough, cubic interpolation.

Expanding the mesh

The input mesh of a stellar model may be inadequate for calculating the frequencies since
the mesh resolution may not be fine enough for there to be sufficient mesh points in a
wavelength. In this case the mesh must be expanded. [Note that this is true even if the
coefficients in the oscillation equations are constants; for example to numerically solve the
simple wave equation y" + w?y = 0 one needs a mesh in x that contains several points
within a wavelength see below.]

The mesh is expanded by linear or cubic intepolation (in x2), such that there are at
least N,, mesh points within the shortest wavelength modes (high frequency p— and low
frequency g — modes) one seeks to calculate. Normally we take N,, = 60. The mesh may
also be expanded for small z. The mesh can also be expanded or reduced by a constant
factor as required.

Surface and Central boundary conditions

At the centre the solution must be regular and is developed as a power series in x. At the
surface (x = z,) the potential y3 = ¢’ matches onto the corresponding solution of Laplace’s
equation, and either the Lagrangian pressure perturbation is set to zero (ys = y1/z?) or
we use the isothermal reflective wave condition (Unno e al 1989, p.166)
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Additional features

The code also has a pgplot subroutine that will plot the eigenmodes if required.
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Accuracy and Mesh Resolution

Experiments with ESTA step 1

ESTA step 1

For step 1 in the comparison of frequency codes we were given a specific model of a main
sequence star of mass 1.2Mg with initial abundance X = 0.7,7Z = 0.02, evolved to a
central hydrogen abundance X. = 0.690

The model was given on a mesh of Ny = 902 points with poor resolution in the central
core the first point away from the core having z = r/R = 0.0166263003.

The frequencies of oscillation modes were calculated using the oscrox code for modes
with £ = 0,1,2,3 in the range 100 < v < 4000 yHz, for a variety of cases with different
enhancements (and reductions) of the mesh resolution, and of the order of the integrator.
oscrox in its standard form uses a 4" order Runge-Kutta integrator, but the code was
also run with a 2"? order integrator iterated to convergence so that it solved the equations
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The resuts for the following cases are shown in the figures.
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2nd order integrator

The number of mesh points taken were N = Ny = 902, the given mesh, and enhanced
meshes enlarged by linear interpolation with N = 2Ny, N = 4NO, N = 8Ny, N = 16Nj.
The results for N = 8 NgandN = 16Ny were the same. The same cases were run using
cubic interpolation to enlarge the mesh but it did not make any significant difference to
the values shown in Figure 1. This figure shows the difference in the frequencies dv relative
to the values with N = 8 x Ny. The frequencies calculated on the input mesh Ny = 902
are substantially different from the for large N, the differences being as large as 8uHz for
the highest frequencies.

4th order integrator

Since the 4th order Runge-Kutta integrator interpolates values at the mid points the basic
model already has a doubling of mesh points. We therefore also calculated the model with
N = Ny/2 = 452 mesh points, where we retained the 2nd mesh point z = 0.0166263003
and the surface mesh point at x = 1.000718847. Here we used cubic interpolation for both
the mid points and mesh enlargement.

The results are shown in the second diagram which shows the diference between the fre-
quencies calculated with N = Ny = 902, N = Ny/2 = 452, N = 2N, and those with
N = 8Ny. The differences are small, at high frequencies they range from 0.6uHz for
N = Ny/2 to 0.03uHz for Ny, and the values for N = 2N, are indistinguishable from the
values for N = 8N,.

The calculations were repeated using linear interpolation rather than cubic to determine
the mesh enlargemant and mid points. The same convergence with N is found in this case
but the actual values at high frequencies differ by ~ 0.1uHz.

Conclusion

These results demonstrate the importance of having sufficient mesh resolution in a wave-
length, and of using an accurate integrator to solve the oscillation equations, to achieve an
accuracy on the frequencies of 0.1uHz, which is the goal of COROT.
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A simple example - Spherical Bessel Functions

To reinforce the above conclusions on the importance of mesh resolution and accuracy of the
integrator, we here study the simple case of the non radial oscillations of a homogeneous
compressible sphere of unit radius where, as shown by Rayleigh (1894), the equations
governing the oscillations reduce to the spherical Bessel equation
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For £ = 0 this reduces to the harmonic equation with solution y = sin(wt) and, with y =0
at the surface at t = 1, the eigenvalues w,, = nw. For £ = 1,2, 3 the eigenvalues can readily
be determined from the known analytical forms of the spherical Bessel functions.

We repeat the experiment in the previous section, numerically integrating the Bessel equa-
tion using both 27¢ order and 4*" order integrators and compare the numerically deter-
mined eigenvalues with the known values for different mesh expansions. The resuts are
shown in the following diagrams for modes up to n = 32 with an initial mesh resolution
Ny = 1000 on {t=0,1}. For convenience of comparison with the previous results we scale
the all frequencies by a factor of 40 &~ A/7 where A =~ 123uHz is the large separation of
frequencies of the stellar model considered in the previous section. Note that we see an £
dependence that was not visible in the results for the stellar model. This is due to the fact
that for a real star the £ dependence is small in the outer layers (where ¢ is small), whereas
for the Bessel equation c is constant throughout the sphere so there is no reduction in the
¢ dependence in the outer layers.

Again the 2"¢ order integrator requires substantial expansion of the mesh to achieve an
error in w of 0.0025 which corresponds to 0.1xHz, the goal of COROT. The 4" order
integrator is very much more accurate - giving an error less than 0.00015 corresponding to
0.053uHz.

The accuracy in the baseline case, Ny = 1000, is somewhat better for the Bessel equation
than for the real star. This is because by choosing a mesh that is uniform in ¢ we are making
best use of the mesh points by having approximately the same number of mesh points
in each wavelength, whereas in the stellar model the mesh points are not so favourably
distributed.

This can be seen by solving the Bessel equation on the dimensionless acoustic radius of
the stellar model and comparing the resulting eigenfrequencies with the values obtained
with a uniform distribution of points. With the 2"?¢ order integrator on the mesh with
Ny = 902, the stellar mesh gives an eigenvalue for the mode n = 32 of 100.74, the uniform
mesh gives 100.64, and the exact value is 327 = 100.531 . ... Scaling this up by the factor
of 40 this corresponds to an error of 8.5uHz and 4.2pHz respectively.

On the other hand for the 4t* order integrator, with N = 902 the eigenvalues are 100.532
and 100.531 respectively, with errors corresponding to 0.03pHz and 0.005p4Hz. For N =
Ny /2 the corresponding errors for the stellar mesh are 0.50p4Hz and 0.08Hz.
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