
starox: stellar evolution code

Ian Roxburgh

Domain of applicability: Pre Main Sequence to Post Main Sequence

1. Basic structure of code

1. Mesh in mass M(i), i = 0, N ; structure variables Vj(i), Chemical Species Xk(i)

2. At time t, predict values Vj , Xj at t + dt, calculate new Xk at t + dt

3. Solve structure for Vj at t + dt with new Xj

4. Iterate steps 2 and 3 to convergence.

Vj = r, L, ρ, T, P, U, . . .; :Xk(k = 1, 9) = 1H, 3He, 4He, 12C, 13C, 14N, 15N, 16O, 17O

2. Structure equations in form solved in code
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3. Equation state and opacity

OPAL GN93 + Alexander opacities, OPAL 2001 state tables, converted for given Z to
tables for log P, log U, log Cp, λ, ∇ad, Γ1, log κ vs

[

log T, log(ρ/T 3)
]

. Interpolation by
local cubics with continuous 1st derivatives. Minor species composition as in tables.

4. Surface layers - Atmosphere

Eddington grey atmosphere incorporated in model by imposing surface condition at R =
r(N) where optical depth τ = τs ∼ 0.001
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Photosphere determined by iterative interpolation to find the value of Rph where T = Teff

with T 4
eff = L(N)/(4πσR2

ph).

5. Convective Core

Nearest mesh points relocated to core boundary (∇rad = ∇ad) and to overshoot boundary
during sucessive iterations for structure and chemical evolution.

Chemical profiles outside shrinking cores smoothed linearly in Mr from Mc(t) to Mc(t+dt)

Chemical overshooting only, extends mixed region by β min(H, rc).

1



6. Condensed Nuclear reaction network used in this code

RijXiXj = number of reactions/gm/sec of species i with species j Reaction rates Rij

and energy release Qij from NACRE with ν, β decay from Bahcall. New analytic fit to
weak-intermediate-strong screening.

R11 : 1H (p, ν e+) 2H(p, γ) 3He

R33 : 3He (3He, α 2p) 4He

R43 : 3He (α, γ) 7Be (e−, ν) 7Li (p, α) 4He

R121 : 12C (p, γ) 13N ( , e+ ν) 13C

R131 : 13C (p, γ) 14N

R141 : 14N (p, γ) 15O ( , e+ ν) 15N

R151 : 15N (p, γ α) 12C

R151a : 15N (p, γ) 16O

R161 : 16O (p, γ) 17F ( , e+ ν) 17O

R171 : 17O (p, γ α) 14N

7. Chemical evolution equations

Mixing in convective regions is modelled as a diffusion process with the diffusion coefficient
νc determined by the MLT model of convection νc = vcon`/3
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where Nijk is the number of particles of species k produced in reaction Rij

Solving the chemical evolution equations for Xk

At mesh point i the diffusion term is discretised in conservative form as
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The evolution equations form a set of tridagonal equations for each k of the form

Ap(i)Xk(i + 1) + A0k(i)Xk(i) + Am(i)Xk(i − 1) = Sk(i), i = 0, N ; k = 1, 9

where A0k and Sk depend on the values of Vj , Xj at time t + dt and V0j, X0j at time t,
The equations are solved using a 1st order implicit algorithm (of which there are many
varities!).

The equations are solved sequentially; that is for each k we solve the system for i = 0, N
using a tridiagonal matrix solver, and the set whole set is repeatedly solved with the
updated Xj(i) until the solution for the Xk(i) has converged here defined as
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where δXk is the difference in values of Xk between succesive iterations.
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8. Solving structure equations give Xk

The variables V1(i) = r, V2(i) = Lr, V3(i) = ρ, V4(i) = T ; all other state variables are
known in terms of these variables and the values of Xk(i) and Z

The time derivatives ∂Q/∂t are taken as 1st order implict in time, and the differential
equations are discretised to 2nd order in space in the form:
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The equations are satisfied when Ek(i) = 0, k = 1, 4; i = 1, N−1 plus the central boundary
conditions (r = 0, Lr = 0 at Mr = 0, and the surface boundary conditions given by the
atmosphere (section 4 above).

The Ek(i) depend on the variables at Vj(i), Vj(i+1), j = 1, 4. We iterate to find the values
of the Vj that give Ek(i) = 0 using a Newton-Raphson technique.

At any given iteration Ek(i) 6= 0. We find the derivatives of the Ek(i) wrt Vj(i), Vj(i + 1),
and solve the linearised equations for corrections δVj(i)
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δVj(i) +

∂Ek(i)

∂Vj(i + 1)
δVj(i + 1) = −Ek(i)

which can be written as

Akj(i) δVj(i) = −Ek(i)

where A is a block diagonal matrix, the blocks being 8 x 4. This system is readily solved
by elimination of the first 2 columns in each block, diagonalisation of the 4 x 4 square
section of the block, and back substitution. This gives corrections δVj(i) to be added to
the Vj(i) This process is repeated until the solution has converged.

In practice we use log V rather than V and the solution is deemed to be converged when
all corrections δV/V < acc (∼ 1/N 2).

Results

The results for the ESTA comparison models are given in the poster by Montiero et al. Here
we point out that relocating a mesh point at the boundary of convective cores and of any
overshoot region results in a relatively smooth variation of the Brunt-Väisäla frequency.
This is illustrated in the figure which shows the results of applying this code to Case 1.5 of
the ESTA comparison exercise. This is for a star of M = 2.0M�, X0 = 0.72, Z = 0.02 with
an overshoot parameter β = 0.15 evolved to a central hydrogen abundance of Xc = 0.01.
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