starox: stellar evolution code

Ian Roxburgh
Domain of applicability: Pre Main Sequence to Post Main Sequence

1. Basic structure of code

1. Mesh in mass M (%), i = 0, N; structure variables V;(i), Chemical Species X} ()

2. At time ¢, predict values V;, X; at t 4 dt, calculate new X at ¢t + dt

3. Solve structure for V; at ¢ + dt with new X

4. Iterate steps 2 and 3 to convergence.
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2. Structure equations in form solved in code
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3. Equation state and opacity

OPAL GN93 + Alexander opacities, OPAL 2001 state tables, converted for given Z to
tables for log P, logU, logCp, A Va4, I'1, logk vs [logT, log(p/T?’)]. Interpolation by
local cubics with continuous 1st derivatives. Minor species composition as in tables.

4. Surface layers - Atmosphere

Eddington grey atmosphere incorporated in model by imposing surface condition at R =
r(N) where optical depth 7 = 75 ~ 0.001

_L(N) 2 _ GM(N) T,
TN = 1o (TS+§)’ PO == )

Photosphere determined by iterative interpolation to find the value of R, where T = T¢ ¢ ¢

5. Convective Core

Nearest mesh points relocated to core boundary (V,.,q = V4q) and to overshoot boundary
during sucessive iterations for structure and chemical evolution.

Chemical profiles outside shrinking cores smoothed linearly in M, from M_.(t) to M.(t+dt)

Chemical overshooting only, extends mixed region by S min(H,r.).



6. Condensed Nuclear reaction network used in this code

R;; X;X; = number of reactions/gm/sec of species ¢ with species j Reaction rates R;;
and energy release Qij from NACRE with v, 5 decay from Bahcall. New analytic fit to
weak-intermediate-strong screening.
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7. Chemical evolution equations

Mixing in convective regions is modelled as a diffusion process with the diffusion coefficient
V. determined by the MLT model of convection v, = v¢o,f/3

o ZNiijinin + o2 or <,0Vc7“ W)

where N, is the number of particles of species k produced in reaction R;;

Solving the chemical evolution equations for Xy

At mesh point 7 the diffusion term is discretised in conservative form as

_%% (pyﬂﬂ%). = A, [Xp(i+ 1) — Xp(i)] — A [ Xk (7)) — Xp(i — 1)]

The evolution equations form a set of tridagonal equations for each k of the form
Ap() Xkt + 1) + Ao (1) Xk (1) + A (1) Xk (i — 1) = Sk(4), ¢=0,N; k=1,9

where Agy, and Si depend on the values of Vj, X; at time ¢ + dt and Vj;, Xo; at time ¢,
The equations are solved using a 1% order implicit algorithm (of which there are many
varities!).

The equations are solved sequentially; that is for each k£ we solve the system for i = 0, N
using a tridiagonal matrix solver, and the set whole set is repeatedly solved with the
updated X;(7) until the solution for the Xj(i) has converged here defined as

> [6X1(i)]* + 106 Z BX3(0))* +10* Y Y [0Xk(i)]® < ace (~10710)

i k#£1,3 i

where 6. X, is the difference in values of X between succesive iterations.
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8. Solving structure equations give X

The variables Vi(i) = 7, Va(i) = L,,V3(i) = p,Va(i) = T; all other state variables are
known in terms of these variables and the values of X (i) and Z

The time derivatives 0Q/0t are taken as 1% order implict in time, and the differential
equations are discretised to 2"% order in space in the form:
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The equations are satisfied when Fy (i) = 0,k = 1,4;i = 1, N —1 plus the central boundary
conditions (r = 0,L, = 0 at M,, = 0, and the surface boundary conditions given by the
atmosphere (section 4 above).

1

E3(i) = [Tig1 — T3] — 3 (12 — 17

The E} (i) depend on the variables at V; (i), V;(i+1), j = 1,4. We iterate to find the values
of the V; that give Ej (i) = 0 using a Newton-Raphson technique.

At any given iteration Ej (i) # 0. We find the derivatives of the Ey (i) wrt V; (i), V;(i + 1),
and solve the linearised equations for corrections 0V (4)

OFE (1) .
Wcﬂ@ (i) +

O0FE (i) , .
5V D = B

which can be written as
Akj(i) 6V;(i) = —Ex(i)

where A is a block diagonal matrix, the blocks being 8 x 4. This system is readily solved
by elimination of the first 2 columns in each block, diagonalisation of the 4 x 4 square
section of the block, and back substitution. This gives corrections §V;(i) to be added to
the V(i) This process is repeated until the solution has converged.

In practice we use log V' rather than V and the solution is deemed to be converged when
all corrections §V/V < acc (~ 1/N?).

Results

The results for the ESTA comparison models are given in the poster by Montiero et al. Here
we point out that relocating a mesh point at the boundary of convective cores and of any
overshoot region results in a relatively smooth variation of the Brunt-Vaisala frequency.
This is illustrated in the figure which shows the results of applying this code to Case 1.5 of
the ESTA comparison exercise. This is for a star of M = 2.0M, Xg = 0.72, Z = 0.02 with
an overshoot parameter 3 = 0.15 evolved to a central hydrogen abundance of X, = 0.01.
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