starox: stellar evolution code

Ian Roxburgh

Domain of applicability: Pre Main Sequence to Post Main Sequence

1. Basic structure of code

- 1. Mesh in mass M(i), i = 0, N; structure variables $V_i(i)$, Chemical Species $X_k(i)$
- 2. At time t, predict values V_j, X_j at t + dt, calculate new X_k at t + dt
- 3. Solve structure for V_i at t + dt with new X_i
- 4. Iterate steps 2 and 3 to convergence. $V_j = r, L, \rho, T, P, U, \ldots; :X_k(k = 1, 9) = {}^{1}H, {}^{3}He, {}^{4}He, {}^{12}C, {}^{13}C, {}^{14}N, {}^{15}N, {}^{16}O, {}^{17}O$

2. Structure equations in form solved in code

$$\frac{\partial M_r}{\partial r^3} = \frac{4}{3}\pi G\rho, \qquad \frac{\partial L_r}{\partial M_r} = \epsilon - \left[\frac{\partial U}{\partial t} - \frac{P}{\rho^2}\frac{\partial \rho}{\partial t}\right], \quad \frac{\partial T}{\partial r^2} = -\nabla \frac{T}{P}\frac{GM_r\rho}{2r^3}$$
$$\nabla \equiv \frac{\partial \log T}{\partial \log P} = \nabla_{rad} \text{ (if } \leq \nabla_{ad} \text{) else} = \nabla_{con}. \quad \nabla_{rad} = \frac{3L_rP\kappa}{64\pi\sigma GM_rT^4}, \ \nabla_{con} \text{ from } MLT$$

MLT Convective Model as implemented in this code, $\ell = \alpha H_p$

$$\nabla_{con} = \nabla_{ad} + \Delta \nabla, \quad \Delta \nabla = \left(\frac{2\,\rho B^2}{\lambda P}\right) \left(x^2 + x\right), \quad B = \frac{48\sigma T^3}{c_p \kappa \alpha^2 H \rho^2}, \quad \lambda = -\left(\frac{\partial \log \rho}{\partial \log T}\right)_P$$
$$x^3 + \frac{4}{9}\left(x^2 + x\right) = \frac{2}{9}\left(\frac{\lambda P}{\rho B^2}\right) \left(\nabla_{rad} - \nabla_{ad}\right), \quad H = min\left(\frac{P}{rhog}, \left(\frac{rP}{2\rho g}\right)^{1/2}\right), \quad v_{con} = \frac{1}{2}\,\alpha B\,x$$

3. Equation state and opacity

OPAL GN93 + Alexander opacities, OPAL 2001 state tables, converted for given Z to tables for log P, log U, log Cp, λ , ∇_{ad} , Γ_1 , log κ vs $\left[\log T, \log(\rho/T^3)\right]$. Interpolation by local cubics with continuous 1st derivatives. Minor species composition as in tables.

4. Surface layers - Atmosphere

Eddington grey atmosphere incorporated in model by imposing surface condition at R=r(N) where optical depth $\tau=\tau_s\sim 0.001$

$$T^4(N) = \frac{L(N)}{4\pi\sigma R^2} \left(\tau_s + \frac{2}{3}\right), \qquad P(N) = \frac{GM(N)}{R^2} \frac{\tau_s}{\kappa(N)}$$

Photosphere determined by iterative interpolation to find the value of R_{ph} where $T = T_{eff}$ with $T_{eff}^4 = L(N)/(4\pi\sigma R_{ph}^2)$.

5. Convective Core

Nearest mesh points relocated to core boundary $(\nabla_{rad} = \nabla_{ad})$ and to overshoot boundary during successive iterations for structure and chemical evolution.

Chemical profiles outside *shrinking* cores smoothed linearly in M_r from $M_c(t)$ to $M_c(t+dt)$ Chemical overshooting only, extends mixed region by $\beta \min(H, r_c)$.

6. Condensed Nuclear reaction network used in this code

 $R_{ij}X_iX_j$ = number of reactions/gm/sec of species *i* with species *j* Reaction rates R_{ij} and energy release Q_{ij} from NACRE with ν, β decay from Bahcall. New analytic fit to weak-intermediate-strong screening.

$$\begin{split} &R_{11}:{}^{1}H\left(p,\nu\;e^{+}\right){}^{2}H(p,\;\gamma)\;{}^{3}He\\ &R_{33}:{}^{3}He\left({}^{3}He,\alpha\;2p\right){}^{4}He\\ &R_{43}:{}^{3}He\left(\alpha,\gamma\right){}^{7}Be\left(e^{-},\nu\right){}^{7}Li\left(p,\alpha\right){}^{4}He\\ &R_{121}:{}^{12}C\left(p,\gamma\right){}^{13}N\left(\;,e^{+}\;\nu\right){}^{13}C\\ &R_{131}:{}^{13}C\left(p,\gamma\right){}^{14}N\\ &R_{141}:{}^{14}N\left(p,\gamma\right){}^{15}O\left(\;,e^{+}\;\nu\right){}^{15}N\\ &R_{151}:{}^{15}N\left(p,\gamma\;\alpha\right){}^{12}C\\ &R_{151a}:{}^{15}N\left(p,\gamma\right){}^{16}O\\ &R_{161}:{}^{16}O\left(p,\gamma\right){}^{17}F\left(\;,e^{+}\;\nu\right){}^{17}O\\ &R_{171}:{}^{17}O\left(p,\gamma\;\alpha\right){}^{14}N \end{split}$$

7. Chemical evolution equations

Mixing in convective regions is modelled as a diffusion process with the diffusion coefficient ν_c determined by the MLT model of convection $\nu_c = v_{con} \ell/3$

$$\frac{\partial X_k}{\partial t} = m_i \sum N_{ijk} R_{ij} X_i X_j + \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left(\rho \nu_c r^2 \frac{\partial X_k}{\partial r} \right)$$

where N_{ijk} is the number of particles of species k produced in reaction R_{ij}

Solving the chemical evolution equations for X_k

At mesh point i the diffusion term is discretised in conservative form as

$$-\frac{dt}{\rho r^2}\frac{\partial}{\partial r}\left(\rho\nu_c r^2\frac{\partial X_k}{\partial r}\right)_i = A_p[X_k(i+1) - X_k(i)] - A_m[X_k(i) - X_k(i-1)]$$

The evolution equations form a set of tridagonal equations for each k of the form

$$A_p(i)X_k(i+1) + A_{0k}(i)X_k(i) + A_m(i)X_k(i-1) = S_k(i), \quad i = 0, N; \quad k = 1, 9$$

where A_{0k} and S_k depend on the values of V_j, X_j at time t + dt and V_{0j}, X_{0j} at time t, The equations are solved using a 1st order implicit algorithm (of which there are many varities!).

The equations are solved sequentially; that is for each k we solve the system for i = 0, Nusing a tridiagonal matrix solver, and the set whole set is repeatedly solved with the updated $X_j(i)$ until the solution for the $X_k(i)$ has converged here defined as

$$\sum_{i} \left[\delta X_{1}(i)\right]^{2} + 10^{6} \sum_{i} \left[\delta X_{3}(i)\right]^{2} + 10^{4} \sum_{k \neq 1,3} \sum_{i} \left[\delta X_{k}(i)\right]^{2} < acc \ (\sim 10^{-10})$$

where δX_k is the difference in values of X_k between succesive iterations.

8. Solving structure equations give X_k

The variables $V_1(i) = r, V_2(i) = L_r, V_3(i) = \rho, V_4(i) = T$; all other state variables are known in terms of these variables and the values of $X_k(i)$ and Z

The time derivatives $\partial Q/\partial t$ are taken as 1^{st} order implicit in time, and the differential equations are discretised to 2^{nd} order in space in the form:

$$E_{1}(i) = [M_{i+1} - M_{i}] - \frac{1}{2} \left[\left(\frac{dM_{r}}{dr^{3}} \right)_{i} + \left(\frac{dM_{r}}{dr^{3}} \right)_{i+1} \right] \left[r_{i+1}^{3} - r_{i}^{3} \right]$$

$$E_{2}(i) = [L_{i+1} - L_{i}] - \frac{1}{2} \left[\left(\frac{dL_{r}}{dM_{r}} \right)_{i} + \left(\frac{dL_{r}}{dM_{r}} \right)_{i+1} \right] [M_{i+1} - M_{i}]$$

$$E_{3}(i) = [T_{i+1} - T_{i}] - \frac{1}{2} \left[\left(\frac{dT}{dr^{2}} \right)_{i} + \left(\frac{dT}{dr^{2}} \right)_{i+1} \right] \left[r_{i+1}^{2} - r_{i}^{2} \right]$$

$$E_{4}(i) = \log \left(\frac{T_{i+1}}{T_{i}} \right) - \frac{1}{2} \left[\nabla_{i+1} - \nabla_{i} \right] \log \left(\frac{P_{i+1}}{P_{i}} \right)$$

The equations are satisfied when $E_k(i) = 0, k = 1, 4; i = 1, N-1$ plus the central boundary conditions $(r = 0, L_r = 0 \text{ at } M_r = 0, \text{ and the surface boundary conditions given by the atmosphere (section 4 above).}$

The $E_k(i)$ depend on the variables at $V_j(i)$, $V_j(i+1)$, j = 1, 4. We iterate to find the values of the V_j that give $E_k(i) = 0$ using a Newton-Raphson technique.

At any given iteration $E_k(i) \neq 0$. We find the derivatives of the $E_k(i)$ wrt $V_j(i), V_j(i+1)$, and solve the linearised equations for corrections $\delta V_j(i)$

$$\frac{\partial E_k(i)}{\partial V_j(i)}\delta V_j(i) + \frac{\partial E_k(i)}{\partial V_j(i+1)}\delta V_j(i+1) = -E_k(i)$$

which can be written as

 $Akj(i)\,\delta V_j(i) = -E_k(i)$

where A is a block diagonal matrix, the blocks being 8 x 4. This system is readily solved by elimination of the first 2 columns in each block, diagonalisation of the 4 x 4 square section of the block, and back substitution. This gives corrections $\delta V_j(i)$ to be added to the $V_j(i)$ This process is repeated until the solution has converged.

In practice we use log V rather than V and the solution is deemed to be converged when all corrections $\delta V/V < acc \ (\sim 1/N^2)$.

Results

The results for the ESTA comparison models are given in the poster by Montiero et al. Here we point out that relocating a mesh point at the boundary of convective cores and of any overshoot region results in a relatively smooth variation of the Brunt-Väisäla frequency. This is illustrated in the figure which shows the results of applying this code to Case 1.5 of the ESTA comparison exercise. This is for a star of $M = 2.0 M_{\odot}, X_0 = 0.72, Z = 0.02$ with an overshoot parameter $\beta = 0.15$ evolved to a central hydrogen abundance of $X_c = 0.01$.

