Report on Nice Oscillation Code ESTA: Frequencies comparison

J. Provost and G. Berthomieu OCA, Dépt. Cassiopée, UMR CNRS 6202

Plan

- \star Presentation and properties of NOC
- \star Global and seismic properties of model Task2/Step1
- \star NOC Internal accuracy tests Task2/Step1 & Sun
- \star Conclusions

Properties of the Nice Oscillation Code

• Variables from Unno et al.:

$$\frac{\xi_r}{r}, \frac{p'}{\rho g r}, \frac{\phi'}{g r}, \frac{1}{g} \frac{d\phi'}{dr}$$

• Difference scheme of second order Richardson extrapolation (Shibahashi & Osaki 1981):

$$\nu_{Ri}(N) = \frac{1}{3} \left(4\nu(N) - \nu(N/2) \right)$$

• Internal check of accuracy

- Comparison of ν and ν^{var} :

check of computation for both model and oscillations

$$(\nu^{var})^2 = \frac{\int \xi^* \mathcal{L}(\xi) \rho dv}{\int \xi^* \xi \rho dv}$$

– Comparison of ν and ν_{Ri}

– Effects of number N and distribution of mesh points?

• Many comparisons in solar case

Properties of the model

• Global quantities:

 $1.2 M_{\odot}, X_c = 0.69 r_{cc} \sim 0.05 R_{\star} r_{ZC} \sim 0.83 R_{\star}$

• Propagation diagram (acoustic cut-off $\nu \sim 4373 \mu \text{Hz}$) Diagramme de propagation (ν en μHz) =1,3 mod_step1

• Large spacing of p modes ~ 120μ Hz. ν from 100 to 4000μ Hz:

pressure modes n=1 to 30 for $\ell = 0, 1, 2, 3$

- + gravity modes g2 g1 for $\ell = 1$
- + gravity modes g5 to g1 and f mode $\ell = 2$
- + gravity modes g7 to g1 and f mode for $\ell = 3$
- •Distribution of the N=902 mesh points

initial distrib. (red line) /adding points at center (blue line)

Eigenfrequency accuracy: 1. Effect of number of mesh points - Task2 - Step1

$$u_{Ri}(N)$$
 - $u(2N)$

$$u_{Ri}(N)$$
 - $u(N)$

- large variation of the computed frequency with N
- $\nu_{Ri}(N)$ $\nu_{Ri}(2N) \leq 0.2 \mu \text{Hz}$ small but still significant hence N \sim 900 is too small
- different behavior of $\ell = 0$: mesh distribution?

Note that $\nu(2N)$ is obtained by interpolation of the model

Eigenfunction accuracy measured by mode energy

1. Effect of number of mesh points - Task2 - Step1

Comparison of E(N) E(2N) $E_{Ri}(N)$ $E_{Ri}(2N)$

Same conclusions as for the frequency:

- large variation of the mode energy with N
- N \sim 900 too small

Symbols: $\ell = 0$ circle, 1 open star, 2 full star, 3 triangle

Eigenfrequency accuracy

2. Effect of number of mesh points - \odot model S -N=2480

• Better accuracy that for case Task2-Step1:

 $N{\sim}2000$ optimum (at least for second order code)

- no need of interpolation
- more mesh points towards the center of the model

Internal consistency – Task2-Step1 Direct eigenfrequency/ its "variational" expression $\nu_{Ri}(N) - \nu_{Ri}^{var}(N)$

dif_0_mod_step1_infini_0_var_mod_step1_infini.res

dif_0_mod_step1_infini_d _0_var_mod_step1_infini_d.res

Better internal consistency with 2N Much improved adding points in central part (see next page) Symbols: $\ell = 0$ circle, 1 open star, 2 full star, 3 triangle

Sensitivity to mesh points distribution

• Adding points in central part to insure enough mesh points over a wavelength new/initial distribution: blue/red line

Results:

- Main effect: change of frequency for $\ell = 0$ (middle figure)
- Better internal consistency: $\nu_{Ri}(2N) \nu_{Ri}^{var}(2N)$

(lower figure compared to previous page)

Conclusions

We point out the effect on the numerical frequencies of the number N of mesh points and of their distribution.

For second order scheme code like NOC it is necessary to make a Richardson extrapolation

We emphasize the importance to estimate the internal consistency of the computation by comparing numerical frequency and its "variational expression"

An accurate frequency computation requires

– a large enough number of mesh points (N \sim 2000)

- a "good" distribution of mesh points, specially enough points close to the center and in central stellar interior.