Report on Task 2 and further work

A. Moya

- Introduction (Codes involved and procedure)
-Frequency comparison
-Large separation comparison
-Small separation comparison
-Conclusions and further work

INTRODUCTION

Equilibrium model

$\mathrm{M} / \mathrm{M}_{\odot}$	$\log \mathrm{T}_{\text {eff }}$	$\log \mathrm{g}$	$\log \mathrm{L} / \mathrm{L}_{\Theta}$	$\mathrm{R} / \mathrm{R}_{\Theta}$	X_{C}	Age (My)	Mesh points
1.2	3.800	4.399	0.250	1.146	0.69	96.7	902

MODCONV

	ADIPLS	POSC	NOC	GraCo	FILOU	LOC	OSCROX
PI	J. Christensen- Dalsgaard	M. Monteiro	J. Provost	A. Moya	J.C. Suárez	R. Scufaire	I. Roxburgh

Frequency comparison

Absolute values

$\ell=0$ and 1

$\ell=2$ and 3

Absolute comparison $\mathrm{L}=0$ and $\mathrm{L}=1$

Absolute comparison $\mathrm{L}=2$ and $\mathrm{L}=3$

Frequency comparison

Absolute differences

$\ell=1$ and 2
 l $=0$ and 1
 $$
\ell=0
$$
 $$
\ell=0 \text { and } 1
$$

Frequency comparison

Summary of differences resp. LOC

	$\ell=0$		$\ell=1$	
	Absolute difference	$\%$ difference	Absolute difference	$\%$ difference
ADIPLS	0.12	0.011	0.12	0.012
POSC	1.5	0.039	0.12	0.012
NOC (no Richard.)	10.5	0.268	10.11	0.26
GraCo	5.81	0.149	4.28	0.11
FILOU	5.33	0.136	6.28	0.159
OSCROX	1.96	0.05	0.14	0.003

Large separation comparison

Absolute values

$\ell=2$ and 3
 $\ell=0 \quad \ell=0$ and 1

$\mathrm{L}=0$ and $\mathrm{L}=1$

Large separation comparison

Absolute differences

$\ell=1$ and 2
 $$
\ell=0 \text { and } 1
$$

$\ell=0$

Large separation comparison

Summary of differences resp. LOC

	$\ell=0$		$\ell=1$	
	Absolute difference	$\%$ difference	Absolut difference	$\%$ difference
ADIPLS	0.038	0.032	0.037	0.031
POSC	0.103	0.083	0.041	0.034
NOC (no Richard.)	0.972	0.79	0.952	0.77
GraCo	0.411	0.335	0.316	0.258
FILOU	0.354	0.354	0.396	0.396
OSCROX	0.255	0.207	0.037	0.031

Small separation comparison

Absolute values

$\ell=0-2$

$\ell=1-3$

Small separation comparison

Absolute differences

$\ell=0-2$

Small separation (Resp. LOC) L=0-2

$\ell=1-3$

Small separation comparison

Relative differences

Small separation comparison

Summary of differences resp. LOC

	$\ell=0$		$\ell=1$	
	Absolute difference	$\%$ difference	Absolute difference	$\%$ difference
ADIPLS	0.023	0.23	0.0079	0.039
POSC	1.027	8.91	0.028	0.149
NOC (no Richard.)	0.083	0.712	0.135	0.709
GraCo	1.519	13.4	0.0972	0.527
FILOU	0.653	5.77	0.088	0.485
OSCROX	1.69	14.95	0.099	0.545

Conclusions and further work

	Frequency comparison		Large separation		Small separation	
	$\ell=0$	$\ell=1$	$\ell=0$	$\ell=1$	$\ell=0-2$	$\ell=1-3$
Absolute diff.	10	10	1	1	1.5	0.14
$\%$ diff.	0.25	0.25	0.8	0.8	16	0.7

Conclusions and further work

1. Richardson extrapolation not used by all codes
2. We must use the same value of the gravity constant G
3. Is there any number of mesh points minimizing the differences? (maybe around 2000)
4. We must use the same boundary condition $\delta \mathrm{P}(\mathrm{R})=0$
5. More information and contributions in:
http://www.astro.up.pt/corot/compfreqs/task2.html

Example about Richardson extrapolation:

	LOC	Graco no RI	GraCo with RI
Frequency $\ell=0, \mathrm{n}=23$	2922.45	2925.30	2921.25

HO(FILOU) $=2924.87 \mu \mathrm{~Hz}$ $\mathrm{HO}(\mathrm{NOC})=2926.8 \mu \mathrm{~Hz}$
HO(ADIPLS) $=2922.6471 \mu \mathrm{~Hz}$ $\mathrm{HO}($ POSC $)=2923.2584 \mu \mathrm{~Hz}$

Example about constant G :

	Graco	Graco	GraCo
	$\mathrm{G}=6.673 \cdot 10^{-8}$	$\mathrm{G}=6.67232 \cdot 10^{-8}$	$\mathrm{G}=6.671682 \cdot 10^{-8}$
Frequency	254.0617	254.0482	254.0356
HO	$\mu \mathrm{Hz}$	$\mu \mathrm{Hz}$	$\mu \mathrm{Hz}$

$\mathrm{HO}(\mathrm{LOC})=254.0304 \mu \mathrm{~Hz}$
$\mathrm{HO}(\mathrm{NOC})=254.05 \mu \mathrm{~Hz}$
$\mathrm{HO}($ ADIPLS $)=254.0438 \mu \mathrm{~Hz}$
$\mathrm{HO}(\mathrm{POSC})=254.051 \mu \mathrm{~Hz}$

	Groups with similar behaviors		
Frequencies	LOC-ADIPLSOSCROX (linear)	POSCOSCROX (cubic)	FILOU-GraCo
Large separation L=0	LOC-ADIPLSOSCROX (linear)	POSCOSCROX (cubic)	FILOU-GraCo
Large separation L=1	LOC-ADIPLSOSCROX (lin)-POSCOSCROX (cubic)	FILOU-GraCo	
Small separation $\mathrm{L}=0-2$	$\begin{aligned} & \text { LOC-ADIPLS- } \\ & \text { OSCROX (lin)- } \\ & \text { NOC } \end{aligned}$	GraCo-POSCOSCROX (cubic)	
Small separation L=1-3	$\begin{aligned} & \text { LOC-ADIPLS- } \\ & \text { OSCROX (lin)- } \\ & \text { POSC } \end{aligned}$	GraCo-FILOUNOC	

We need a better knowledge about how we treat boundaries and the constants used.

Optimize number and distribution of mesh points.

Frequency comparison

Relative differences

$$
\ell=0
$$

$\ell=0$ and 1

Large separation comparison

Relative differences

Relative Large Differences (resp. LOC) $\mathrm{L}=0$ and $\mathrm{L}=1$

