Summary of Aarhus workshop

24 – 28 October 2005 Jørgen Christensen-Dalsgaard

Issues

- Numerical accuracy
- Physical consistency
- Model differences
- Near-surface effects
- Semiconvection

Intrinsic numerical accuracy

• Compare models computed with a given code and given parameters

- Vary number of meshpoints
- Vary number of timesteps

Physics comparisons

Evaluate physics (EOS, opacity, energy-generation rate, rate of composition change, ..., at fixed T, ρ , X_i

Examples: comparing CESAM and CLES with ASTEC, showing, e.g.,

 $ln(\kappa_{ASTEC}(\rho_{CESAM}, T_{CESAM}, ...)/\kappa_{CESAM})$

Case no

0.004

8 Variable: d(Gamma1)

OPAL 2005 appears to be much more consistent!

Main project: compare different codes

- Evolution tracks
- Global parameters for selected models
- Detailed comparison of structure
- Comparison of oscillation frequencies

CLES and ASTEC

Case 1.3

1.2 M-

 $X_0 = 0.73, Z_0 = 0.01$

 M_{HeC} = 0.1 M-

CLES and ASTEC

Case 1.3

1.2 M-

 $X_0 = 0.73, Z_0 = 0.01$ $M_{HeC} = 0.1 M_{-}$

CLES, CESAM and ASTEC

Case 1.5n 2.0 M– $X_0 = 0.72, Z_0 = 0.02$

X_c = 0.01

No overshoot

CLES, CESAM and ASTEC

Case 1.5n 2.0 M– $X_0 = 0.72, Z_0 = 0.02$ $X_c = 0.01$

Overshoot 0.15 H_p

Detailed model comparison

- Global quantities
- Differences at fixed m/M, plotted against m/M or r/R
- Differences at fixed r/R might be more illustrative for effects on oscillations (but not used yet)

Near-surface problems

- Differences in atmospheric treatment?
- Differences in mixing-length treatment?
- Results in different radii!

Action: compare details of mixing-length formulations

Problems with growing convective core

