Summary of Aarhus workshop

24-28 October 2005
Jørgen Christensen-Dalsgaard

Issues

- Numerical accuracy
- Physical consistency
- Model differences
- Near-surface effects
- Semiconvection

Intrinsic numerical accuracy

- Compare models computed with a given code and given parameters
- Vary number of meshpoints
- Vary number of timesteps

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($N=1200)-(N=600)$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. timesteps:

$$
\begin{aligned}
& \left(\mathrm{N}_{\mathrm{t}}=24\right)-\left(\mathrm{N}_{\mathrm{t}}=13\right) \\
& \left(\Delta \mathrm{y}_{\max }=0.025\right)-\left(\Delta \mathrm{y}_{\max }=0.05\right)
\end{aligned}
$$

Line styles:

ASTEC

Case 1.3

$1.2 \mathrm{M}-\mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($N=600$) $-(N=1200)$

Line styles:

Case 1.3

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$
${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($N=600$) $-(N=1200)$

Line styles:

ASTEC

Case 1.3

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. timesteps:

$$
\begin{aligned}
& \left(\mathrm{N}_{\mathrm{t}}=277\right)-\left(\mathrm{N}_{\mathrm{t}}=546\right) \\
& \left(\Delta \mathrm{y}_{\max }=0.05\right)-\left(\Delta \mathrm{y}_{\max }=0.025\right)
\end{aligned}
$$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($N=600$) $-(N=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-\mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($N=600$) $-(N=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($N=600$) $-(N=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-\mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.\mathrm{N}_{\mathrm{t}}=208\right)-\left(\mathrm{N}_{\mathrm{t}}=402\right)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.N_{t}=208\right)-\left(N_{t}=402\right)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.N_{t}=208\right)-\left(N_{t}=402\right)$

Line styles:

Case 1.3

CLES

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$

Test effect of no. of meshpoints:
($\mathrm{N}=2361$) $-(\mathrm{N}=1187)$

Case 1.3

CLES

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$

Test effect of no. of timesteps:
($\mathrm{N}=233$) $-(\mathrm{N}=115)$

Case 1.5
$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

CLES

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Test effect of no. of meshpoints:
($N=2409)-(N=1200)$

Case 1.5
$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Test effect of no. of timesteps:
($N=374)-(N=189)$

Physics comparisons

Evaluate physics (EOS, opacity, energy-generation rate, rate of composition change, \ldots, at fixed T, ρ, X_{i}

Examples: comparing CESAM and CLES with ASTEC, showing, e.g.,
$\ln \left(\kappa_{\text {ASTEC }}\left(\rho_{\text {CESAM }}, T_{\text {CESAM }}, \ldots\right) / \kappa_{\text {CESAM }}\right)$

CESAM, Case 1.1

CESAM, Case 1.1

CLES, Case 1.1

OPAL 2005 appears to be much more consistent!

Effects of electron conduction

Case 1.3
$\mathrm{M}=1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$
Z $=0.01$
$\rho_{\mathrm{c}}=3253 \mathrm{~g} \mathrm{~cm}^{-3}$
In other smaller effect

Line styles:

Main project: compare different codes

- Evolution tracks
- Global parameters for selected models
- Detailed comparison of structure
- Comparison of oscillation frequencies

CLES and ASTEC

Case 1.3
1.2 M-
$\mathrm{X}_{0}=0.73, \mathrm{Z}_{0}=0.01$
$\mathrm{M}_{\mathrm{HeC}}=0.1 \mathrm{M}-$

CLES and ASTEC

Case 1.3
1.2 M-
$\mathrm{X}_{0}=0.73, \mathrm{Z}_{0}=0.01$
$\mathrm{M}_{\mathrm{HeC}}=0.1 \mathrm{M}-$

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
No overshoot

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
No overshoot

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Detailed model comparison

- Global quantities
- Differences at fixed m / M, plotted against m/M or r/R
- Differences at fixed r/R might be more illustrative for effects on oscillations (but not used yet)

Hydrogen abundance

$$
\begin{aligned}
& 0.9 \mathrm{M}- \\
& \mathrm{X}_{0}=0.7 \\
& \mathrm{Z}_{0}=0.02 \\
& \mathrm{X}_{\mathrm{c}}=0.35
\end{aligned}
$$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

CLES - CESAM2

Line styles:
-.-.-.-.-.-. : $\delta \ln T$

------- : $\delta \ln p$

- - - - - : $\delta \ln \rho$
δX
—— : $\delta \ln c^{2}$
$-\cdots-\cdots-\cdots-\quad \delta \ln \Gamma_{1}$

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

CLES - CESAM2

0.004

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

$: \delta \ln T$	$\delta \ln q$
-------: $\delta \ln p$	------- : $\delta \ln L$
- - - - : $\delta \ln \rho$	-- : δ X
- $: \delta \ln c^{2}$	
- $\cdots-\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

CESAM2 - CESAMO

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

ASTEC - CESAMO

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

.--------	$: \delta \ln T$
------	$:$
$\ln p$	$-\ldots-\ldots$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

$: \delta \ln T$	$\delta \ln q$
------- : $\delta \ln p$	----- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- $: \delta \ln c^{2}$	
¢1	

Case 1.1
 $0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Hydrogen abundance

1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Case 1.2

1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

CLES - CESAMO

Case 1.2

1.2 M－
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles：

－．－．：$\delta \ln T$	：$\delta \ln q$
－－－－－－－：$\delta \ln p$	－－－－－－－：$\delta \ln L$
ーーーー－：$\delta \ln \rho$	．．．：δX
－＿：$\delta \ln c^{2}$	
－$\cdots-\cdots-\cdots$ ：$\delta \ln \Gamma_{1}$	

CLES－CESAMO

Case 1.2
$1.2 \mathrm{M}-$
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

$: \delta \ln T$: $\delta \ln q$
------- : $\delta \ln p$	------- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- : $\delta \ln c^{2}$	
$\delta \ln \Gamma$	

CLES - CESAMO

Case 1.2
1.2 M-

$$
\begin{aligned}
& X_{0}=0.7 \\
& Z_{0}=0.02 \\
& X_{c}=0.69
\end{aligned}
$$

Near-surface problems

- Differences in atmospheric treatment?
- Differences in mixing-length treatment?
- Results in different radii!

Action: compare details of mixing-length formulations

Hydrogen abundance

$1.2 \mathrm{M}-$
$\mathrm{X}_{0}=0.73$
$\mathrm{Z}_{0}=0.01$
$\mathrm{M}_{\mathrm{HeC}} / \mathrm{M}=0.1$

Hydrogen abundance

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
No overshoot

Hydrogen abundance

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
Overshoot, $0.15 \mathrm{H}_{\mathrm{p}}$

Problems with growing convective core

Problems with growing convective core

Semiconvection

