Summary of Aarhus workshop

Some selected results

Intrinsic numerical accuracy

- Compare models computed with a given code and given parameters
- Vary number of meshpoints
- Vary number of timesteps

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$
${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($N=1200)-(N=600)$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. timesteps:

$$
\begin{aligned}
& \left(\mathrm{N}_{\mathrm{t}}=24\right)-\left(\mathrm{N}_{\mathrm{t}}=13\right) \\
& \left(\Delta \mathrm{y}_{\max }=0.025\right)-\left(\Delta \mathrm{y}_{\max }=0.05\right)
\end{aligned}
$$

Line styles:

ASTEC

Case 1.3

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$
${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($\mathrm{N}=600$) $-(\mathrm{N}=1200)$

Line styles:

Case 1.3
$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$
${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. of meshpoints:
($N=600)-(N=1200)$

Line styles:

Case 1.3

$1.2 \mathrm{M}-, \mathrm{M}_{\mathrm{c}}=0.1 \mathrm{M}-$

${ }^{3} \mathrm{He}$ in equilibrium

Test effect of no. timesteps:

$$
\begin{aligned}
& \left(N_{t}=277\right)-\left(N_{t}=546\right) \\
& \left(\Delta y_{\max }=0.05\right)-\left(\Delta y_{\max }=0.025\right)
\end{aligned}
$$

Line styles:

: $\delta \ln T$	$: \delta \ln q$
-------: $\delta \ln p$	----- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- : $\delta \ln c^{2}$	
- $-\cdots-\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($N=600)-(N=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-\mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($N=600)-(N=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of meshpoints:
($\mathrm{N}=600$) $-(\mathrm{N}=1200)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.N_{t}=208\right)-\left(N_{t}=402\right)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.N_{t}=208\right)-\left(N_{t}=402\right)$

Line styles:

Case 1.5

$2.0 \mathrm{M}-\mathrm{X}_{\mathrm{c}}=0.01$,

Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

${ }^{3} \mathrm{He}$ in equilibrium
Test effect of no. of timesteps:
($\left.N_{t}=208\right)-\left(N_{t}=402\right)$

Line styles:

Case 1.1

$$
0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35
$$

TGEC

Test effect of no. of timesteps:
($\Delta \mathrm{t}=2000 \mathrm{yr})-(\Delta \mathrm{t}=1800 \mathrm{yr}$

Continuous: $\delta \ln T$
Dotted: $\delta \ln p$
Dashed: $\delta \ln \rho$
Dot-dashed: $\delta \ln c^{2}$
3dot-dashed: $\delta \ln \Gamma_{1}$
Long-dashed: $\delta \ln \mathrm{L}$

Thick continuous: $\delta \ln X$

Case 1.1

$$
0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35
$$

TGEC

Test effect of no. of timesteps:
($\Delta \mathrm{t}=2000 \mathrm{yr})-(\Delta \mathrm{t}=2200 \mathrm{yr})$

Continuous: $\delta \ln T$
Dotted: $\delta \ln p$
Dashed: $\delta \ln \rho$
Dot-dashed: $\delta \ln \mathrm{c}^{2}$
3dot-dashed: $\delta \ln \Gamma_{1}$
Long-dashed: $\delta \ln \mathrm{L}$
Thick continuous: $\delta \ln X$

Case 1.1

$$
0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35
$$

TGEC

Test effect of no. of timesteps:
($\Delta \mathrm{t}=2000 \mathrm{yr})-(\Delta \mathrm{t}=2200 \mathrm{yr})$

Continuous: $\delta \ln T$
Dotted: $\delta \ln p$
Dashed: $\delta \ln \rho$
Dot-dashed: $\delta \ln \mathrm{c}^{2}$
3dot-dashed: $\delta \ln \Gamma_{1}$
Long-dashed: $\delta \ln \mathrm{L}$
Thick continuous: $\delta \ln X$

Physics comparisons

Evaluate physics (EOS, opacity, energy-generation rate, rate of composition change, \ldots, at fixed T, ρ, X_{i}

Examples: comparing CESAM and CLES with ASTEC, showing, e.g.,

$$
\ln \left(\kappa_{\text {ASTEC }}\left(\rho_{\text {CESAM }}, T_{\text {CESAM }}, \ldots\right) / \kappa_{\text {CESAM }}\right)
$$

CESAM, Case 1.1

Note: consistency problems in OPAL.
See also Boothroyd \& Sackman (2003; ApJ 583, 1004)

In ASTEC implementation:
Directly from OPAL: $\mathrm{p}, \mathrm{r}_{\mathrm{ad}}, \delta, \alpha, \Gamma_{1}$
$c_{p}=c_{v}+p \delta^{2} /(\rho T \alpha)$

CESAM, Case 1.1

CESAM, Case 1.1

Case no
8 Variable: d(Gamma1)

CLES, Case 1.1

Main project: compare different codes

- Evolution tracks
- Global parameters for selected models
- Detailed comparison of structure
- Comparison of oscillation frequencies

CLES and ASTEC

Case 1.3
1.2 M-
$\mathrm{X}_{0}=0.73, \mathrm{Z}_{0}=0.01$
$\mathrm{M}_{\mathrm{HeC}}=0.1 \mathrm{M}-$

CLES and ASTEC

Case 1.3
1.2 M-
$\mathrm{X}_{0}=0.73, \mathrm{Z}_{0}=0.01$
$\mathrm{M}_{\mathrm{HeC}}=0.1 \mathrm{M}-$

CLES, CESAM and ASTEC

Case 1.5n
2.0 M-
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
No overshoot

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$X_{0}=0.72, Z_{0}=0.02$
$X_{c}=0.01$
No overshoot

CLES, CESAM and ASTEC

Case 1.5n
$2.0 \mathrm{M}-$
$\mathrm{X}_{0}=0.72, \mathrm{Z}_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

CLES, CESAM and ASTEC

Case 1.5n
2.0 M-
$X_{0}=0.72, Z_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Detailed model comparison

- Global quantities
- Differences at fixed m / M, plotted against m / M or r / R
- Differences at fixed r/R might be more illustrative for effects on oscillations (but not used yet)

Hydrogen abundance

$$
\begin{aligned}
& 0.9 \mathrm{M}- \\
& \mathrm{X}_{0}=0.7 \\
& \mathrm{Z}_{0}=0.02 \\
& \mathrm{X}_{\mathrm{c}}=0.35
\end{aligned}
$$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

$\delta \ln T$: $\delta \ln q$
------- : $\delta \ln p$	-- - - : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
$\underline{\square}: \delta \ln c^{2}$	
--.--..-..- : $\delta \ln \Gamma_{1}$	

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$
dgm.cles ${ }^{\circ} 1.1-\operatorname{cesam} 2^{\circ} 11 \quad\left(\delta \ln c^{2}\right)$
0.004 - LES - CESAM2

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

. $\delta \delta \ln T$	$\delta \ln q$
-------: $\delta \ln p$	----- : $\delta \ln L$
- - - - : $\delta \ln \rho$: δX
- : $\delta \ln c^{2}$	
- $\cdots-\cdots-\cdots \cdot: \delta \ln \Gamma_{1}$	

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

$\delta \ln T$: $\delta \ln q$
------- : $\delta \ln p$	--- - : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
$\underline{-}: \delta \ln c^{2}$	
- $-\cdots-\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

Case 1.1

$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

ASTEC - CESAMO

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

-. : $\delta \ln T$	$: \delta \ln q$
------- : $\delta \ln p$	---- : $\delta \ln L$
- - - - : $\delta \ln \rho$	\cdots : δ :
-_ : $\delta \ln c^{2}$	
- $\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Line styles:

$\delta \ln T$: $\delta \ln q$
------- : $\delta \ln p$	-- - - : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
$\underline{\square}: \delta \ln c^{2}$	
--.--..-..- : $\delta \ln \Gamma_{1}$	

dgm.0090.Z2.612.52.98-case 11° cesam0 ($\delta \ln c^{2}$ Ssta- crase

Case 1.1
$0.9 \mathrm{M}-, \mathrm{X}_{\mathrm{c}}=0.35$

Hydrogen abundance

1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$\mathrm{X}_{\mathrm{c}}=0.69$

Case 1.2

1.2 M-

$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

: $\delta \ln T$: $\delta \ln q$
-------: $\delta \ln p$	------- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
$\underline{-}: \delta \ln c^{2}$	
$\delta \ln \Gamma_{1}$	

Case 1.2
1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

$: \delta \ln T$	$\delta \ln q$
-------: $\delta \ln p$	------- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- $: \delta \ln c^{2}$	
δ	

Case 1.2
1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

CLES - CESAMO

Case 1.2

$$
\begin{aligned}
& 1.2 \mathrm{M}- \\
& \mathrm{X}_{0}=0.7 \\
& \mathrm{Z}_{0}=0.02 \\
& \mathrm{X}_{\mathrm{c}}=0.69
\end{aligned}
$$

Line styles:

$: \delta \ln T$: $\delta \ln q$
------- : $\delta \ln p$	--- - - : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- : $\delta \ln c^{2}$	
- $-\cdots-\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

Case 1.2
1.2 M-
$X_{0}=0.7$
$Z_{0}=0.02$
$X_{c}=0.69$

Line styles:

: $\delta \ln T$: $\delta \ln q$
-------: $\delta \ln p$	------- : $\delta \ln L$
- - - - : $\delta \ln \rho$	- : δX
- : $\delta \ln c^{2}$	
- $-\cdots-\cdots-\cdots$: $\delta \ln \Gamma_{1}$	

Hydrogen abundance

$$
\begin{aligned}
& 1.2 \mathrm{M}- \\
& \mathrm{X}_{0}=0.73 \\
& \mathrm{Z}_{0}=0.01 \\
& \mathrm{M}_{\mathrm{HeC}} / \mathrm{M}=0.1
\end{aligned}
$$

Case 1.3
1.2 M-
$X_{0}=0.73$
$Z_{0}=0.01$
$M_{\mathrm{HeC}} / \mathrm{M}=0.1$

Line styles:
-.-.-.---.-. : $\delta \ln T$

------- : $\delta \ln p$

- - - - - : $\delta \ln \rho$
—— : $\delta \ln c^{2}$
$-\cdots-\cdots-\cdots-\quad: \quad \delta \ln \Gamma_{1}$

Case 1.3

1.2 M-
$X_{0}=0.73$
$Z_{0}=0.01$
$M_{\mathrm{HeC}} / \mathrm{M}=0.1$

Line styles:
-.-.-.---.-. : $\delta \ln T$
—_ : $\delta \ln q$
------- : $\delta \ln p$
------- $: \delta \ln L$

- - - - - : $\delta \ln \rho$
—— : $\delta \ln c^{2}$
$-\cdots-\cdots-\cdots-\quad: \quad \delta \ln \Gamma_{1}$

Hydrogen abundance

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
No overshoot

Case $1.5 n$

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
No overshoot

Case $1.5 n$

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
No overshoot

Hydrogen abundance

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
Overshoot, $0.15 \mathrm{H}_{\mathrm{p}}$

Case 1.5

2.0 M-
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Line styles:
-.-.-.-.-.-. : $\delta \ln T$

------- : $\delta \ln p \quad------\quad: \delta \ln L$

- - - - : $\delta \ln \rho \quad-\cdots-\cdots-\cdots:-\cdots X$

Case 1.5

2.0 M－
$X_{0}=0.72$
$Z_{0}=0.02$
$X_{c}=0.01$
Overshoot $0.15 \mathrm{H}_{\mathrm{p}}$

Line styles：
－．－．－．－－－．－．：$\delta \ln T$

－－－－－－－：$\delta \ln p$

$$
------\quad: \delta \ln L
$$

ーーーー－：$\delta \ln \rho$
—— ：$\delta \ln c^{2}$
$-\cdots-\cdots-\cdots-\quad: \delta \ln \Gamma_{1}$

