Toulouse-Geneva Evolution Code

M. Castro

Laboratoire d'Astrophysique de Toulouse-Tarbes Observatoire Midi-Pyrénées Université Paul Sabatier – Toulouse III

Physical Inputs (1)

▶ Equation of state : MHD 80-85, 92; OPAL 96
OPAL 2001 tables, for the appropriate value of Z (Z=0, 0.02, 0.04).

quadratic interpolation at fixed temperature at three values of density, followed by quadratic interpolation along temperature results are smoothed by mixing overlapping quadratics

▶ Opacity : OPAL 92, 93, 95; Los AlamosOPAL 1996 tables, with Alexander low-temperature values

Physical Inputs (2)

Nuclear reactions: Caughlan & Fowler 88; Adelberger et al. 98
NACRE tables

calculation of the nuclear reactions rates calculation of the nuclear and gravitational energy production rates calculation of screening corrections

*Convection treatment: mixing-length theory
the mixing-length parameter α is a *free parameter*convection zones limits are determined by Ledoux criterion

Physical Inputs (3)

- Chemical composition: Grevesse&Noels 93 chemical elements are separately treated until Mg the initial helium composition Y₀ is a *free parameter*Asplund 04 composition is available
- > **Metallicity**: overall metallicity of the star

How the code works?

- Reading of the physical inputs
- Calculation of the initial chemical composition with respect to inputs Y₀ and Z, and of Grevesse&Noels 93 composition
- Calculation of an initial polytropic model PMS (n=1.5) or MS (n=3)
- Reading of the previous model calculation of the age (previous age + time step) calculation of L and T_{eff} by extrapolation of previous L and T_{eff}

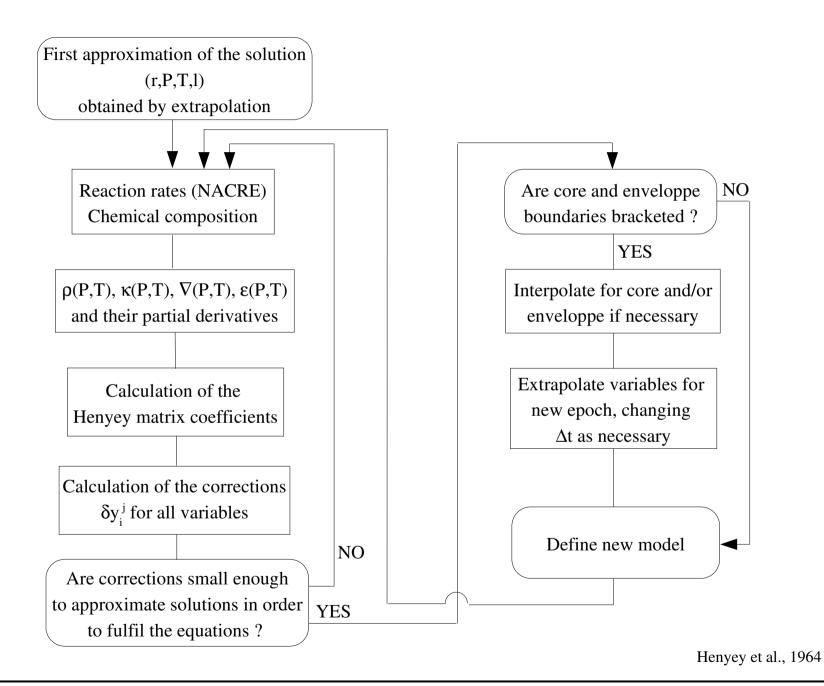
Henyey method for computation of the stellar structure at each step of the evolution

Henyey method

- > Spherical symmetry in hydrostatic equilibrium
- The star is considered to be divided into **concentric shells**
 - → 1D system in which radius is divided into zones by a set of mesh points
- All quantities are evaluated at the same mesh points
- At each mesh points: 4 unknown variables r, P, T, 1

$$(r=y_1, P=y_2, T=y_3, l=y_4)$$

K mesh points \rightarrow (4K-2) unknown variables (r = 1 = 0 at the centre) which have to fulfil (4K-2) equations


- ▶ 4 equations for the innermost interval between central point $m^{K}=0$ and m^{K-1} $C_{i}(r^{K-1},P^{K-1},T^{K-1},l^{K-1},P^{K}=P_{C},T^{K}=T_{C})=0$; i=1,4
- >4(K-2) equations for the K-2 shells of the interior

$$A_{i}^{j} = \frac{y_{i}^{j} - y_{i}^{j+1}}{m^{j} - m^{j+1}} - f_{i}(y_{1}^{j+1/2}, ..., y_{4}^{j+1/2}) = 0 ; i = 1,4$$

- ≥ 2 equations for the outer boundary condition : $P = \pi$ (R,L) and $T = \theta$ (R,L) $B_1 = y_2^1 - \pi(y_1^1, y_4^1) = 0$, $B_2 = y_3^1 - \theta(y_1^1, y_4^1) = 0$
- Calculation by iteration :

first approximation $(y_i^j)_1$ of the solution obtained by extrapolation of a previous solution corrections for all variables such as : $(y_i^j)_2 = (y_i^j)_1 + \delta y_i^j$

Henyey matrix composed by the derivatives of the equations with respect to the y_i

Non-standard processes

- Microscopic diffusion: gravitational settling and thermal diffusion (Chapman & Cowling 70, Paquette 86)
- Different kinds of mixing:

Zahn 92: turbulent mixing

Richard 96 : μ-gradient cutoff

Théado 2003: meridional circulation

- > Overshooting: temporary extension of the mixing of the convective zone
- > Radiative forces in progress