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Origin and history

Kippenhahn, Weigert, Hofmeister (1967): THE CODE

Thomas (1967 – late ’70s): various versions, physics,
numerics

Weiss (early ’80s – today): physics, modular structure

Wagenhuber (1993 – 1997): numerical stability, modular
structure

Schlattl (1996 – 2005): physics, versatility
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Programming language

core in FORTRAN 77

additions/changes since mid ’90s in FROTRAN 90/95

several“miscellaneous”(non-physical) routines in C

ANSI-standard, fully portable

pre-compiler features for package selection (EOS, opacities)

! This is just a shortcut to inlcude the right EOS into the program

#ifdef mhd

#include "mhdeos.f"

#elif defined (opfine) || defined (opal) || defined (opal01)

#include "opaleos.F"

#else

#include "eos_inter.f"

#endif
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Documentation

“An Incomplete Guide to the
Kippenhahn-Weigert-Hofmeister Stellar Evolution Code”
(Weiss, 1988)

detailed description of routines

still valid for several routines

“Documentation for Star2003”(Schlattl, 2004)

incomplete

documentation about code usage

including auxiliary programs and tools for output
analysis

technical variables

source description missing

Weiss & Schlattl (A&A Suppl. 144, 487, 2000)
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Auxiliary routines and utilities

suite of IDL-routines for data analysis and graphical display

C-routines for handling of binary (model) data

make-utilities (generation of Makefile)

code available as complete package

source code

utilities source code

input data

starting model, parameter and abundance files

install+test shell script: installation, compilation,
sample run

including adjustment to different OS-platforms (separate
binary file trees)
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Variables and equations

Lagrange coordinate Mr/M (and alternatives)

independent variables ln T , ln P , ln Lr/L (and alternatives)

dependent variables ln κ, ln ρ etc. also stored in model file

four standard stellar evolution equations solved (spatial
problem)

optional: v = ∂r
∂t and ∂2r

t2
term in pressure equation

composition changes solved as temporal problem
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Spatial and temporal problem

solve spatial (boundary) problem at time t with

composition ~X(t)

complete model from Mr = 0 to M in implicit scheme

solve temporal (initial value) problem between models at
time t and t + △t

nuclear network

convective mixing (instantaneous or diffusive)

diffusion

or combinations up to burning and mixing solved
simultaneously

spatial variables (T , ρ) kept constant over △t

or predictor–corrector–method for estimating T (t) etc.
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Spatial resolution and grid control

grid adjusted between two models at time t and t + △t

insertion and deletion of grid points; linear interpolation of
quantities at inserted points

grid resolution governed by curvature method (Wagenhuber
& Weiss 1994)

requirement:
∣

∣

∣
f(x0 + ξ) −

(

f(x0) + df(x)
dx |x0ξ

)
∣

∣

∣
< δ

estimate: ξ ≈ (x1 − x0)
√

δ
|3(f1−f0)−(f ′

1
+2f ′

0
)(x1−x0)|

check: f(x1) −
df
dx |c(x1 − x0) < f(x1)δ

δ = 10−4 · · · 10−3

examples for grid point numbers: main sequence star: 600;
red giant: 1000; helium flash: 2500; AGB: 1500–2500;
SMM: 1900
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Equation solver

first-order Henyey block matrix solver for 4 equations

generalized first order Henyey solver for arbitrary number of
equations (for diffusion and burning–and–mixing)

convergence monitoring with adjustable
under-/overcorrection factors

convergence criterion (typical): largest correction in

variables anywhere < 10−4

set-back in case of divergence or slow convergence

reduced accuracy in case of marginal convergence
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Atmospheres

Various options:

Eddington grey atmosphere

Krishna-Swamy t − τ -relation

Lucy (1976) spherical atmosphere, including mass equation
(AGB)

always Rosselandt mean κ used!

any outer boundary condition, e.g. from model
atmospheres, fitted at τ = 1000
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Starting models

usually“previous”model

for ZAMS: total mass and composition adjusted for new
problem without chemical evolution

Runge-Kutta solver for models from scratch (PMS, ZAMS,
HB)
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Mass loss

mass loss between two models

Reimers formula, with variable η

dust-driven winds (Wachter et al. 2002)

technical procedure:

reduce total mass

keep number of grid points constant

keep T , P , r, Lr constant at grid points

rescale (stretch) mass at grid points down to some
mass coordinate (parameter for affected depth)
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Opacities

opacity tables prepared outside stellar evolution program

tables on X and Z grid

program reads 3x7 tables or whole grid

Alexander & Ferguson (1995) plus OPAL tables for exactly

same composition

for solar-scaled (Grevesse & Noels 1993 =“Seaton 1992”)
and α-enhanced metal mixtures (Weiss et al. 1994)

combined, extended by Itoh (1992) electron conduction and
Weiss, Keady, Magee (1989) opacities for lg T > 8.7

additional core tables for H-free mixtures

large number of tables for additional mixtures (e.g.
alternative α-element enhancement factors
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Opacities/2

linear interpolation in X and Z or log Z

bi-rational two-dimensional damped rational spline
interpolation in T -R grid

fk(x) = Aku + Bkt + Ck
u3

pkt + 1
+ Dk

t3

qku + 1

t =
x − xk

xk+1 − xk
u = 1 − t

contains adjustable parameter for cubic (p = 0) to linear
(p → ∞) interpolation

one value of p for whole table
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Opacity interpolation

experience shows, very slight damping best
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Sample opacity table

non-rectangular tables possible (“ragged boundaries”)

09/2005 3rd CoRoT/ESTA meeting, Nice – p.16



Equation of State

Choice of:

Saha-EOS for H, He, C plus partially degenerate electron
gas (analytic approximations by Thomas & Kippenhahn
(1971), extended by Wagenhuber (1996))

OPAL (Rogers et al. 1996); OPAL+ (2001) with OPAL
interpolation routines; fine grid

Mihalas et al. 1988 with OPAL interpolation scheme

Irwin (2003) precalculated tables plus interpolation as for
opacities

SCOPE (Weiss 2001): tables from merging OPAL,
Saumon+Chabrier, and EFF (Pols et al. 1995) with
interpolation as for opacities
SC only for H/He mixtures! Metals Z added to true Y
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Sample SCOPE table
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Convection

Schwarzschild- or Ledoux-criterion

convective, if ∇ad > ∇rad for arithmetic mean over grid cell

Mixing length theory; αMLT = 1.6 from SMM

or Canuto/Mazzitelli (with αCM = 0.9)

mixing instantaneous or as diffusive process (with vc

estimated from MLT)

mixing over all convective grid cells, even if ∇ad < ∇rad for
last grid point

overshooting as diffusive process a la Freytag et al. (1996)

D(z) = D0 exp
−2z

fHP

semi-convection implemented, but not used
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Non-Local, time-dependent convection

theory by Kuhfuß (1987)

implementation by Flaskamp (2003; PhD thesis)

full three-equation model

not (yet) suited for model calculations

but for detailed comparison of theory with observations
(seismic Sun, massive stars)
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Diffusion

diffusion coefficients calculated following Thoul et al.
(1994)

H/He-diffusion only

or all elements, but with diffusive speed taken that of Fe

no radiative levitation

new: Paquette’s integrals for diffusion constants plus
quantum corrections (Schlattl 2004)
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Energy production

reaction rates: Coughlan & Fowler (1988), Adelberger et
al. (1998), NACRE, and individual rates (e.g. Kunz et al.

2002 for 12C(α, γ)16O)

outdated: equilibrium reaction rates for H- and He-burning

standard: nuclear network for H-burning or“approximative”
network (Woosley 1986) for He- and higher burning phases

H: pp-chains and CNO-cycles; β-decays instantaneously

for Li, Be, B: equilibrium assumed

optional: full p-capture nucleosynthesis (includes light
elements and NeNa- and MgAl-cycle)

He: 3α, 12C(α, γ)16O, 16O(α, γ)20Ne

C- and higher: very rudimentary
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Energy production/2

combined H- and He-network possible

energy generation calculated from full network solution
→ △Yi and binding energies

electron screening: Salpeter (1951)

mass deficit due to nuclear energy production considered

plasma neutrino losses: Munakata et al. (1988) and Haft et
al. (1994) for plasma neutrinos

thermal energies: −T ∂s
∂t

approximative as in Kippenhahn &

Weigert (1990) or including mixing entropy terms (µi
∂ni

∂t
)

−T ∂s
∂t

: standard first order; recently second order

expression (Lucy 2005)
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Chemical evolution

between two models for time t and t + △t

solved with same network as for energy generation

network: implicit backward differencing scheme

linearized, solutions for △Yi

“nuclear” timestep 1/100 of evolutionary △t, but adjustable

max. number of timesteps or until △t is reached
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Examples: the solar model

Grevesse & Sauval composition; with diffusion; in comparison to model S of

Christensen-Dalsgaard and Bahcall & Pinsonneault 1995 (Schlattl & Weiss 2001)
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Examples: grids of low-mass stars

α-enhanced mixtures: effect of relative element abundances; new Ferguson (2005) tables;

M/M⊙ = 0.6 · · · 1.3 (Weiss, Ferguson, Salaris 2005)
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Examples: ZAHB models

Calculations through core helium flash in 0.85 M⊙, Z = 0.0001 star (Serenelli & Weiss

2005)
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Examples: core helium flash with p-mixing

Late core helium flash in low-mass Pop. II star including mixing between H-rich envelopes

and He-burning layers (Cassisi, Schlattl, Salaris, Weiss 2003)
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Examples: AGB evolution

Luminosity and total mass during AGB-phase of a 3 M⊙ star with Z = Z⊙, with

dust-driven mass loss (Kitsikis & Weiss 2005)
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Examples: model calibration

4 3.8 3.6 3.4
0

1

2

3

4
M13 
Cohen, Melendez 2005

Kraft et.al. 1997
Smith, Briley, Harbeck et.al. 2005
Cavallo, Nagar 2000

Briley, Cohen, Stetson 2004

Comparison of model Teff and spectro-

scopic data for globular cluster M13,

[M/H]=-1.3 (Gieseler & Weiss 2005).

The magenta lines are isochrones with

(solid) and without (dashed) diffusion,

the red line an 0.9 M⊙ evolutionary track

with αMLT = 1.5.
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back in print:

Cambridge Scientific Publishers, 2004

Price 65 GBP; student and other re-

bates

paperback edition at ≈ 40 GBP in 2006

http://www.cambridgescientificpublishers.com
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