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Introduction

Since the early 70s, our research group at the Institute of Astrophysics of Liège has been
using an evolution code derived from the Henyey code. This code has been continu-
ously updated. Nevertheless, with the progress of asteroseismology, it became clear that
the frequencies and the stability of the oscillation modes were too sensitive to details of
the model, which were unimportant for the computation of stellar evolution. It was thus
decided to write a new code, meeting the specific requirements of our studies in asteroseis-
mology. This code has been named Clés. It is the acronym of Code Liégeois d’Évolution

Stellaire. It is still in an active phase of development. The code is intended to be easily
customized to the needs of the user and Josefina Montalban has created some variants of
it for the needs of the comparison with CESAM. I will briefly describe some features of
the current version (version 18) and say a few words about the developments in progress.
I will mainly insist on some aspects of the code and differences with CESAM, which may
be useful to understand the results of the comparisons of models computed with the two
codes, a subject that will be discussed by Josefina Montalban and Yveline Lebreton in
this meeting.

Numerics

Clés is a lagrangian code. Finite difference equations of order two are used for the dis-
cretization of the spatial equations. The mesh is automatically adapted so as to limit the
variations of physical variables from one point to the next one. The default criteria used
to choose the mesh size are

∆r/R ≤ 5 × 10−3 , ∆m/M ≤ 5 × 10−3 , ∆P/P ≤ 5 × 10−2 and ∆T/T ≤ 10−2 .

Unfortunately, no effort has been made to increase the number of points near the bound-
aries of convective zones. With these criteria, a 2 M� model starts its evolution on the
Hayashi track with 700 points and reaches the zero-age main sequence with 1150 points.
The same total number of points is approximately kept along the main sequence, with
local additions or deletions of points. A simple command allows the user to require a finer
or a coarser mesh.

The finite difference scheme written to follow the time evolution of the abundances is of
order one to avoid numerical instabilities. The timestep is chosen to limit the variations
of the physical variables from one model to the next. For instance, for a 2 M� model in
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its PMS or MS phases, the following default limitations are imposed on the variations of
the physical variables from one model to the next.

∆T/T ∆P/P ∆Te/Te ∆L/L ∆Xc

if Tc ≤ 1.6 × 107 4.0 × 10−1 5.0 × 10−1 4.0 × 10−2 1.0 × 10−1 1.0 × 10−2

if Tc > 1.6 × 107 5.0 × 10−2 7.0 × 10−2 7.0 × 10−3 3.0 × 10−2 1.0 × 10−2

The evolution sequences are normally started on the Hayashi sequence. With the above
criteria, a 2 M� model evolution needs 125 steps for the pre-main sequence, 75 steps for
the main sequence and 20 steps for the second gravitational contraction.

The timestep may be increased or decreased according to the needs of the user. It is also
automatically reduced when the resolution of the spatial equations becomes too slow.

Equation of state

Two equations of state (EOS) are implemented, CEFF (Christensen-Dalsgaard and Däp-
pen 1992) and OPAL 2001 (Rogers et al. 1996, Rogers 2001). OPAL comes in tabular
form, but tables have also been built for the CEFF EOS (to accelerate the computation).
We were not satisfied with the OPAL interpolation routines. We use our own interpola-
tion routines which ensure the continuity of the first derivatives at cell boundaries in the
four-dimensional space defined by the variables log ρ, log T , X and Z. The detailed metal
mixture is supposed to be unimportant for the EOS (and cannot be changed for OPAL).

Opacity

Clés uses the OPAL opacities (Iglesias and Rogers 1996), completed with the opacities
of Alexander and Ferguson (1994) ones at low temperature. The tables are merged in a
smooth way. In the temperature domain log T ∈ [3.9, 4.15] where the opacity is defined
in both tables, Clés uses an opacity κ defined as the average

log κ = (1 − θ) log κAF + θ log κOPAL ,

where θ is the third degree polynomial in log T illustrated in Fig 1.

Again we use our own interpolation routines in the four variables log R, log T , X and Z,
where R = ρ/T 3

6 . At the present time, the metal mixture is fixed for the computation of
the opacity, within a given model. A few tables are available for different metal mixtures
and new tables are easily computed.
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Figure 1: The opacities of Alexander and Ferguson (1994) and OPAL are merged using
the function θ.

Nuclear energy generation

The following reactions are taken into account in Clés.

p-p chains:
2 1H → 2H + e+ + ν
2H + 1H → 3He + γ
2 3He → 4He + 2 1H
3He + 4He → 7Be + γ
7Be + e− → 7Li + ν
7Li + 1H → 2 4He

7Be + 1H → 2 4He + e+ + ν + γ

CNO cycles:
12C + 1H → 13C + e+ + ν + γ

13C + 1H → 14N + γ
14N + 1H → 15N + e+ + ν + γ

15N + 1H → 12C + 4He
15N + 1H → 16O + γ

16O + 1H → 17O + e+ + ν + γ
17O + 1H → 14N + 4He
18O + 1H → 15N + 4He
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He combustion:
3 4He → 12C + γ

12C + 4He → 16O + γ
14N + 4He → 18O + e+ + ν + γ

16O + 4He → 20Ne + γ

We follow thoroughly the combustion of 2H and 7Li. Only unstable species (as 7Be, 13N,
15O and 17F) are supposed to be at equilibrium.

We have already implemented the main reactions of the helium burning phase but we
have yet to improve our code to be able to accurately follow this phase of the evolution
(semi-convection, equation of state, opacity).

The Caughlan and Fowler (1988) reaction rates have been used. For 14N(p,γ)15O, we use
the cross-section given by Formicola et al. (2004). A variant of the program using the
NACRE reaction rates in their approximate analytical form (Angulo et al. 1999) has been
written to facilitate the comparisons with CESAM.

The next version of Clés will use NACRE tables instead of analytical fits.

Gravitational energy generation

There are two different versions of this term in textbooks. In Cox and Giuli (1968) for
instance, we find

εg = −T
dS

dt
−

∑

i

µi

dni

dt
,

where the µi are the chemical potentials and the ni the number of moles per gram. In
Kippenhahn and Weigert (1990) we find

εg = −T
dS

dt
.

The difference between both expressions is not negligible. If we integrate during the whole
main sequence, the difference is of the order of the local internal energy. There is a very
convincing paper of Strittmatter et al. (1970) in favor of the first expression, which can
also be written

εg =
dU

dt
− P

d(1/ρ)

dt
.

We have adopted this form of εg in the current version of Clés.

Convection

We have implemented the usual mixing-length theory of Böhm-Vitense (1958), also ex-
posed in the textbooks of Cox and Giuli (1968) and Kippenhahn and Weigert (1990).
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Henyey et al. (1965) have described a variant which has been totally or partially imple-
mented in some evolution codes, but not in ours. In order to describe possible differences
between evolution codes, it is necessary to have a look at some details of the equations.

In a convective zone, it is usual to define four gradients: ∇rad > ∇ > ∇′ > ∇ad. To
determine ∇ in terms of ∇rad and ∇ad, one must solve a cubic equation in Γ, the efficiency
of convection (defined as the ratio of the energy effectively transported by convective
elements to the energy they loose by radiation). In the Böhm-Vitense theory, this equation
reads

9

4
Γ3 + Γ2 + Γ = B(∇rad −∇ad) ,

where the mixing-length parameter enters the definition of coefficient B. Each term of
the left-hand side of this equation is linked to a gradient difference,

9

4
Γ3 = B(∇rad −∇) , Γ2 = B(∇−∇

′) , Γ = B(∇′
−∇ad) .

From these relations the actual gradient in the convective zone can be expressed as

∇ =
9

4
Γ2∇ad + (Γ + 1)∇rad

9

4
Γ2 + Γ + 1

.

The variant of the theory due to Henyey et al. (1965) differs from the standard theory on
the following points.
- The turbulent pressure is included in the total pressure and is taken into account in a

corrected adiabatic gradient ∇∗

ad.
- The departure from the radiative diffusion approximation is taken into account through

a corrective factor f . It differs significantly from 1 in the external layers where the
optical depth is small.

- The 9/4 factor in the cubic equation is replaced by a factor φ which depends on f and
on the shape and optical thickness of the convective element.

With these modifications the main equations read

φΓ3 + Γ2 + Γ = B(f∇rad −∇
∗

ad) ,

∇ =
φΓ2∇∗

ad + (Γ + 1)f∇rad

φΓ2 + Γ + 1
.

According to CESAM 5 user’s manual (Morel 2003, description of routines conv_jmj and
conv_a0), the Henyey et al. variant is partially implemented in CESAM. The turbulent
pressure is taken into account, but the cubic equation is written without the parameter f .
The user’s manual gives φ = 9/4 but, in the code, the optical thickness of the convective
element is taken into account for the computation of φ, with φ → 9/4 when this optical
thickness � 1.

Another difference between Clés and CESAM in the treatment of convection is the choice
of the mixing-length `. It is generally defined as

` = αHP .

5



In Clés, its value is reduced in thin convective zones in the following way,

` = αmin(HP , h) ,

where h is the thickness of the convective zone. In CESAM, the value of ` is modified in
a more subtle way and vanishes at the boundaries of convective zones.

Presently, the mesh is not adapted to a rigourous treatment of the boundaries of the
convective zones. This results in some numerical diffusion at the boundaries. This does
not seem to be a major problem but we plan to better describe these boundaries with
double mesh points in a future version of the code.

Overshooting

In previous versions of Clés, the boundary of the overshooting zone was determined as
the point where the pressure is

lnPov = lnPc ± αov ,

where Pc is the pressure at the boundary of the convective zone and αov the overshooting
parameter.

In the present version, the extension of the overshooting zone is defined in a more con-
ventional way as

rov = rc ± αov min(HP , h) ,

where rc is the radius at the boundary of the convective zone and h its size.

In our models, the gradient in overshooting zones is taken as the radiative gradient ∇rad,
whereas in CESAM it is taken as the adiabatic gradient ∇ad.

Diffusion

We follow the theory of stellar diffusion developed by Thoul et al. (1994). A rather
crude treatment neglecting the radiative forces is presently implemented. Pierre-Olivier
Bourge, one of our PhD student, in collaboration with Georges Alecian, is implementing
a treatment taking radiative forces into account in a particular version of the code.

Atmosphere

The models computed by Clés extend up to the photosphere or an optical depth τ = 1,
10 or 100 chosen by the user where they are fitted to a model atmosphere of Kurucz
with overshooting (1998). A grey Eddington atmosphere (without convection) can also
be fitted at the photospheric level.
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