
starox-NACRE17: stellar evolution code

Ian Roxburgh

Domain of applicability: Pre Main Sequence to Post Main Sequence

Basic structure of code

1. Mesh in mass M(i), i = 0, N ; dM(i) = M(i) − M(i − 1)

2. At time t, V0(j, i) are the structure variables j at mesh point i
X0(k, i) the composition variables k at i

3. Guess V (j, i), X(k, i) at t + dt [here taken as V0(j, i), X0(k, i)]

4. Solve chemistry for X(k, i) at t + dt using V (j, i), V0(j, i), X(k, i), X0(k, i)

5. Solve structure for V (j, i) at t + dt given X(j, i), V0(j, i)

Iterate steps 4 and 5 to find V (j, i), X(j, i) at t + dt

Structure Variables: V 1 = r, V 2 = L, V 3 = ρ, V 4 = T, V 5 = P, V 6 = U, . . .
Chemical species: 1H, 3He, 4He, 12C, 13C, 14N, 15N, 16O, 17O, Z

Structure equations in form solved in code
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= ∇con if ∇rad > ∇ad, ∇con from MLT
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P = P (ρ, T, X1, Z), U = U(ρ, T, X1, Z), ∇ad = ∇ad(ρ, T, X1, Z)

κ = κ(ρ, T, X1, Z), ε = ε(ρ, T, Xk, Z)

Other forms of equations readily implemented
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MLT Convective Model as implemented in this code

α is mixing length parameter ` = αH
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Energy generation

ε =
∑

RjkXkXjEkj Rates Rkj, energy/reaction Ekj

RkjXkXj=Number of Reactions/gm/sec of species k with j

Here Rkj, Ekj from NACRE (usually Adelberger); ν, β decay Bahcall.

Includes iwr fit to weak-intermediate-strong screening.

Equation state and opacity

OPAL GN93 + Alexander opacities, OPAL 2001 state tables.

Generate Ztables on uniform mesh in V LT = log10 T, V LR = log10(ρ/T 3), X1

V LT = 3.30 (0.05) 8.5 V LR = −25.0 (0.125) − 17.0 X1 = 0 (0.1) 1.0

Data tabulated:

V LP = log10 P, V LU = log10 U, V LCp = log10 Cp

V LRT =

(

∂ log ρ

∂ log T

)

P

, ∇ad, Γ1, V LK = log10 κ

Interpolation is by local 4 point cubics with continuous 1st derivatives.

Composition: fixed as in state and opacity tables.
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Chemical Evolution

Condensed Nuclear reaction network used in this code

Rkj : Number of Reactions/gm/sec of species k with j = RkjXkXj

Ekj : Net energy (ergs) released to gas per reaction of species k with j
includes e+ anihilation, less ν losses.

R11 : 1H (p, ν e+) 2H(p, γ) 3He

R33 : 3He (3He, α 2p) 4He

R43 : 3He (α, γ) 7Be (e−, ν) 7Li (p, α) 4He

R121 : 12C (p, γ) 13N ( , e+ ν) 13C

R131 : 13C (p, γ) 14N

R141 : 14N (p, γ) 15O ( , e+ ν) 15N

R151 : 15N (p, γ α) 12C

R151a : 15N (p, γ) 16O

R161 : 16O (p, γ) 17F ( , e+ ν) 17O

R171 : 17O (p, γ α) 14N

Evolution equations

Mixing in convective regions is modelled as a diffusion process with the diffusion
coefficient νc = determined by the MLT model of convection.
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Surface layers - Atmosphere

No separate atmosphere

Eddington grey atmosphere incorporated in model by imposing surface
condition at R = r(N) where optical depth τ = τs ∼ 0.001

T 4(N) =
L(N)

4πσR2

(

τs +
2

3

)

, P (N) =
GM(N)

R2

τs

κ(N)

Photosphere determined by iterative interpolation to find the value of Rph

where T = Teff with T 4
eff = L(N)/(4πσR2

ph).

Slight error due to height of atmosphere (τ 6= τs)

Interpolate for values of all variables Vj , Xk at Rph and intercalate in the
output model.

Convective Core

Boundary of core Mr = Mc, r = rc

Relocate nearest mesh point to core boundary

During iterations for structure determine boundary of core Mc where
∇rad = ∇ad by interpolation

Move nearest mesh point to core boundary, interpolate values of variables
M, dM, V, V0, X, X0 on core boundary.

Include |Mc(it)/Mc(it − 1)| < acc in convergence condition for structure

Smoothing chemical profile outside shrinking core

Chemical profiles outside shrinking core linear in Mr from Mc(t) to Mc(t + dt)

Overshooting from convective core, chemical mixing only

Extends mixed region by β min(H, rc) setting νc constant in overshoot region
from rc to rov. β adjustable parameter.
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Advancing the solution from t to t + dt

The basic solution algorithm is implemented as follows

1 call predict(M,V,Vo,X,Xo,t,dt,N,Nv,Nm)
do k=1,kk

call newxi(M,dM,V,Vo,X,Xo,dt,Z,N,Nv,Nm,kt)
call Xmodel(M,dM,V,Vo,X,Xo,dt,Z,N,Nv,Nm,it)
if(it.eq.1) goto 4

enddo
4 continue

if(X(1,0).gt.Xend) goto 1

subroutine predict sets the time step dt, stores values at t in X0(k, i), V0(j, i),
predicts X(k, i), V (j, i) at t + dt [here set equal to X0(k, i), V0(j, i)].

subroutine newxi calculates new values of X(k, i) using the input values of
V, V0, X, X0. kt is the number of iterations needed in newxi for the solution
for the new X(k, i) to converge.

subroutine Xmodel then calculates new values of V (j, i) using the input
values of V, V0, X. it is the number of iterations needed in Xmodel for the
solution for the new V (j, i) to converge.

The cycle is repeated until the solution for the V (j, i) has converged (it = 1).
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Solving the Chemical equations for X(k, i)

The chemical evolution equations are solved as 1st order implicit equations;

(

∂Xk

∂t

)

i

=
Xk(i) − Xko(i)

dt

the diffusion term being expressed in conservative form as

−
dt
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i

= Ap[Xk(i + 1) − Xk(i)] − Am[Xk(i) − Xk(i − 1)]

Ap(i), Am(i), which are the same for all k can be very large in convective regions;
in practice they are limited in magnitude for reasons of numerical accuracy. The
evolution equations are then written as a set of linear tridagonal equations for
each k of the form

Ap(i)Xk(i + 1) + A0(i)Xk(i) + Am(i)Xk(i − 1) = Sk(i), i = 0, N

where A0(i) and Sk(i) depend on the values of the of Am(i), Ap(i), Rij, V (j, i),
X(j, i), X0(j, i) whose current values are known on entry to newxi.

An example is the equation for X3 which is here updated using the code

call rates(V,R11,R33,...
call difcof(M,dM,V,AP,AM,..

* advance X3
do i=0,N

A0(i)=1-AP(i)-AM(i)+(R33(i)*(X3(i)+X3o(i))+R43(i)*X4(i))*m3*dt
S(i)=X3o(i)+R11(i)*X1(i)*X1o(i)*m3*dt

enddo
Call Tridiag(AM,A0,AP,S,X3,N,Nn)

There are several alternative algorithms of 1st order that can be used.

The equations are solved sequentially; that is for each k we solve the system for
i = 0, N using a tridiagonal matrix solver, and the set is repeatedly solved with
the updated Xj(i) until the solution for the Xk(i) has converged here defined
as
∑

i

[δX1(i)]
2

+ 106
∑

i

[δX3(i)]
2

+ 104
∑

k 6=1,3

∑

i

[δXk(i)]
2

< acc (∼ 10−10)

where δX is the difference in values of X between succesive iterations.
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Solving structure equations give Xi

The variables V (1, i) = r, V (2, i) = Lr, V (3, i) = ρ, V (4, i) = T ; all other state
variables are known in terms of these variables and the values of X(1, i) and Z

The time derivatives ∂Q/∂t are taken as 1st order implict in time, and the
differential equations are discretised to 2nd order in space in the form:
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−
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The equations are satisfied when E(k, i) = 0

The E(k, i) depend on the variables at V (j, i), V0(j, i), V (j, i + 1), V0(j, i + 1),
j = 1, 4. We iterate to find the values of the V (j, i) that give E(k, i) = 0 using
a Newton-Raphson technique.

At any given iteration E(k, i) 6= 0. We find the derivatives of the E(k, i) wrt
V (j, i), V (j, i + 1) and solve the linearised equations for corrections δV (j, i)

∂E(k, i)

∂V (j, i)
δV (j, i) +

∂E(k, i)

∂V (j, i + 1)
δV (j, i + 1) = −E(k, i)

which can be written as

A(k, j, i) δV (j, i) = −E(k, i)

where A is a block diagonal matrix, the blocks being 8 x 4. This system is readily
solved by elimination of the first 2 columns in each block, diagonalisation of the
4 x 4 square section of the block, and back substitution. This gives corrections
δV (j, i) to be added to the V (j, i) This process is repeated until the solution is
obtained.

In practice we use log V rather than V and the solution is deemed to be con-
verged when all corrections δV/V < acc (∼ 1/N 2).
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Parameters for comparison models

For all values of X1, Z the initial abundances were taken as

X3 = 10−5, X12 = 0.173285 Z, X14 = 0.053152 Z, X16 = 0.482273 Z

X4 = 1 − X1 − Z, all other Xk = 0

All models started on the pre main sequence with a (nominal) initial radius
Ri = 5R� except model 1.4 where Ri = 10R�. The mesh was N = 2000 in all
cases; i = 0, 2001 with the photosphere intercalated.

Results from staroxNACRE17

case Age R/R� L/L� Teff T7c ρc Xc Mc/M Re/R

1.1 6674 0.8926 0.6259 5439 1.446 151.8 0.3500 0.0000 0.6964
1.2 101.5 1.1483 1.778 6225 1.576 86.84 0.6900 0.0076 0.8292
1.3
1.4 8.292 1.8623 15.64 8419 1.900 49.19 0.6994 0.1077 0.9917
1.5 1197 3.6520 23.32 6644 2.801 131.8 0.0101 0.0635 0.9854
1.6 14.46 1.8552 101.6 13468 2.487 43.17 0.6900 0.2118 0.9939
1.7 55.60 3.8708 744.9 15342 2.838 19.76 0.3500 0.1597 0.9929
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Results for Case 1.5 without movable overshoot mesh point

Results for Case 1.5 with movable overshoot mesh point
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Output File

eg m0.90Z.020X0.350 for M = 0.90M�, Z = 0.020, Xc = 0.350

open(1, file=’m0.90Z.020X0.350’)
read(1,*) N, Gee, Rs, Ms, dLro2, dLP2, Xc, X0, Z, LLs, Te, age6,

1 qc, xe, alpha, tau
do i=0,N

read(,* ) j, x(i), q(i), P(i), rho(i), Gamma1(i), D(i), dq(i), L(i),
1 T(i), X1(i), X3(i), X4(i), X12(i), X14(i), X16(i)
enddo

c This is evolutionary sequence leading to output model
read(1,*) im, Ms, X0, Z, age6, alpha, tau
do i=1,im

read(1,*) j, age(i), Tei(i), Li(i), X1c(i), Ri(i), rhoc(i), Tc(i), qci(i), xei(i)
enddo
close(1)

Rs=photospheric radius, X0=initial X1, LLs=L/L�, age6=age/106y

x=r/Rs, q=Mr/Ms, dq(i)=q(i)-q(i-1), D(i) = 1/Γ1 − d log ρ/d logP

Ms is mass, Rs the photospheric radius, dLro2, dLP2 are second derivatives
at x=0 useful for determining oscillation frequencies, Xc is central hydrogen
abundance, X0 the initial hydrogen abundance, LLs=L/L�, Te the effective
temperature, age6 the age in units of 106 years, qc=Mc/Ms the fractional core
mass, xe=re/Rs the fractional radius at base of the deepest convective envelope,
alpha the mixing length parameter and tau the surface optical depth.
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Results from staroxNACRE17

case Age R/R� L/L� Teff T7c ρc Xc Mc/M Re/R

1.1 6674 0.8926 0.6259 5439 1.446 151.8 0.3500 0.0000 0.6964
1.2 101.5 1.1483 1.778 6225 1.576 86.84 0.6900 0.0076 0.8292
1.3
1.4 8.292 1.8623 15.64 8419 1.900 49.19 0.6994 0.1077 0.9917
1.5 1197 3.6520 23.32 6644 2.801 131.8 0.0101 0.0635 0.9854
1.6 14.46 1.8552 101.6 13468 2.487 43.17 0.6900 0.2118 0.9939
1.7 55.60 3.8708 744.9 15342 2.838 19.76 0.3500 0.1597 0.9929

results with modifications to algorithm for chemical evolution,
number of mesh points, and time step.

with movable overshoot boundary
1.5n 1200 3.6630 23.32 6634 2.799 131.4 0.0103 0.0636 0.9850

fully implicit
1.1 6733 0.8933 0.6281 5442 1.449 152.2 0.3500 0.0000 0.6965

full mix con core
1.1 6670 0.8926 0.6259 5439 1.446 151.8 0.3500 0.0000 0.6964

time centred (unstable)
1.1 7018 0.8983 0.6382 5449 1.450 156.1 0.3500 0.0000 0.6959

dX1dt-2000
1.1 6862 0.8936 0.6274 5439 1.448 151.7 0.3500 0.000 00.6962

dX1dt-1000
1.1 6862 0.8938 0.6274 5439 1.448 151.7 0.3500 0.0000 0.6962

dX1dt-500
1.1 6863 0.8944 0.6273 5437 1.448 151.7 0.3500 0.0000 0.6962

dX1dt-2000
1.1 6862 0.8936 0.6274 5439 1.448 151.7 0.3500 0.0000 0.6962

dX1dt/2-2000
1.1 6798 0.8934 0.6277 5441 1.448 152.0 0.3500 0.0000 0.6963

dX1dt/4-2000
1.1 6769 0.8933 0.6279 5441 1.448 152.1 0.3500 0.0000 0.6964

dX1dt/4-500
1.1 6770 0.8941 0.6277 5439 1.448 152.1 0.3500 0.0000 0.6964

dX11dt/4-2000
1.1 6764 0.8933 0.6278 5441 1.448 152.1 0.3500 0.0000 0.6964
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