





















| Case              | log(L/L <sub>☉</sub> ) | T <sub>eff</sub> | log g | Frequencie<br>(µHz) |
|-------------------|------------------------|------------------|-------|---------------------|
| γ Doradus         | 0.845                  | 7200             | 4.24  | [ 11, 22 ]          |
| δ Scuti (FG Vir.) | 1.109                  | 7345             | 4.00  | [ 70, 410 ]         |
| SPB (HD 215573)   | 2.453                  | 12960            | 4.09  | [5, 12]             |
| β Ceph. (EN Lac.) | 3.877                  | 21756            | 3.842 | [ 55, 95 ]          |

















## Some results

**Differences** between codes

•POSC: Shooting method using second order centered differences representation.

•GRACO: Henyey method as explained in Unno et al.

•FILOU: Galerkin method

•Other possible differences as boundary conditions, etc.

Working plan

Previous requirements

Development of Task 1 ???

 Development of the conversion tool MODCONV or similar (those used in the work of Mazumdar, for example)

STA Workshop 3, Nice 27/09/2005

## <section-header><list-item><list-item><list-item><list-item><list-item>



## Working plan

Ŷ

Finally, develop an exercise as the example with Nu Eridanis (define a star and solve it with independent set of codes). This will ensure a better understanding of the physics in the star.

Development of Task 3: Frequencies comparisor ESTA Workshop 3, Nice 27/09/2005