Asteroseismology of PMS intermediate mass stars: the case of IP Per

Marcella Marconi

INAF-Osservatorio Astronomico di Capodimonte

Coworkers: A. Ruoppo, M.J.P.F.G. Monteiro, F. Palla, S. Degl'Innocenti, V. Ripepi, J. Christensen-Dalsgaard

PMS intermediate mass pulsating stars

Palla & Stahler (1993)

Esta/COROT meeting, Nice, September 27, 2005

➤ Theory allows to calculate the so-called birth-line, i.e. the location of stars of different mass when they start their PMS phase.

▷PMS stars contract from the birthline to their location on the Main-Sequence on the Kelvin-Helmoltz time scale: t=3/7·(GM²)/RL.

➢ During their evolution toward the MS a number of intermediate mass PMS stars are able to <u>cross the</u> <u>instability strip</u> of more evolved δ Scuti. Crossing times are of the order of $10^5 \div 10^6$ years

<u>Why to search for PMS δ Scuti stars ?</u>

Determination of the intrinsic stellar parameters

 $P\sqrt{\rho=\text{cost.}} \Rightarrow P=P(M,R)$ but $L=L(R,Te) \Rightarrow P=P(M,L,Te) \Rightarrow \text{if } L,Te$ are known indipendently, the comparison between a measured period and the theoretical value provides the stellar mass.

<u>Determination of the inner structure</u>

Pulsation (asteroseismology techniques) also allows us to probe the interior of Herbig Ae, whose structure is different from that of MS objects.

<u>Stellar structure evolution</u>

Frequency changes due to modifications of the interior: $(dP/dt)/P \approx 10-6$ yr-1 $\Rightarrow 0.4$ h in 10 years for the epoch of maxima

<u>34 known or suspected PMS δ Scuti stars</u>

Pulsating PMS Stars

May 2005

Name	RA (2000.0)		DEC (2000.0)		Spectral	V	Log Teff	Log L/Lsun	Туре	number of	freq. with	amplitude for		
						Туре					puls. frequ.	highest amp.	highest frequency	
	hh	mm	SS	dd	mm	SS		mag					[c/d]	[mmag]
V 589 Mon	- 6	39	28.46	9	42	4.1	F2 III	10.32	3.85	1.51	cluster member	19	6.489	11.15
V 588 Mon	6	39	5.9	9	41	3.4	A7 III/IV	9.73	3.9	2.05	cluster member	12	5.138	6.8
NGC 6823 HP57	19	43	6.78	23	16	37.8	-	14.6	3.86	1.25	cluster member	2	12.726	27.0 (lc)
NGC 6823 BL50	19	43	9.07	23	17	49.6	-	14.5	3.86	1.6	cluster member	2	13.917	18.0 (Ic)
NGC 6383 198	17	34	48	-32	37	24	-	12.83	3.87	1.3	cluster member	1	19.024	20.8 / 26.4 (V/B)
NGC 6383 170	17	34	37	-32	36	17.9	A5 IIIp	12.6	3.91	1.7	cluster member	5	14.376	12.5 / 16.0 (V/B)
IC 4996 40	20	16	- 30	37	39	32.8	A4	15.03	3.93	1.26	cluster member	1	33.569	7.6 / 8.5 (V/B)
IC 4996 37	20	16	22	37	39	31	A5	15.21	3.91	1.26	cluster member	1	31.875	4.6 / 4.6 (V/B)
IC 348 H 254 🛨	3	44	31.2	32	6	22.1	F0 (A8 III-IV)	10.6	3.85	1.62	cluster member	4	7.406	5.4
NGC 6530 5	18	4	42.3	-24	18	3.5	-	13.59	3.92	1.2	cluster member	2	46.596	1.4 / 1.8 (V/B)
NGC 6530 82	18	4	30.83	-24	23	42.1	-	13.97	3.88	1.01	cluster member	3	38.531	2.4 / 2.8 (V/B)
NGC 6530 85	18	4	20.67	-24	24	55.7	A1 III	13.07	3.86	1.37	cluster member	5	15.579	30.2 / 39.1 (V/B)
NGC 6530 263	18	4	21.78	-24	15	46.9	-	13.67	3.87	1.13	cluster member	1	19.223	7.1 / 8.3 (V/B)
NGC 6530 278	18	4	13.95	-24	13	28	A0/A5	12.17	3.9	1.75	cluster member	9	7.199	6.6 / 9.4 (V/B)
NGC 6530 281	18	4	0.24	-24	15	2.6	-	13.35	3.92	1.29	cluster member	7	43.418	4.2 / 4.7 (V/B)
V 351 Ori 🔶	- 5	44	18.79	0	8	40.4	A7 IIIe	8.9	3.87	1.15	HAEBE	5	15.687	22.9
V 346 Ori 🔶	- 5	24	42.8	. 1	43	48.3	A5 III	10.1	3.89	0.98	HAEBE	4	35.200	3.9/3.6/2.9 (UBV)
UX Ori	- 5	4	30	-3	47	14.28	A3e	9.6	3.94	1.49	HAEBE	suspected	suspected	suspected
IP Per 🔶 🛨	3	40	46.97	32	31	53.7	A7 V	10.4	3.89	0.97	HAEBE	9	22.890	6.0
HR 5999	16	8	34.29	-39	6	18.3	A7 III/IVe	6.98	3.85	2.12	HAEBE	1	4.812	7.5 / 5.7 / 5.6 (UBV)
HD 35929 🔶 🛨	5	27	42.79	-8	19	38.4	F0 II le	8.2	3.86	1.92	PMS ?	1	5.100	20.0
HD 142666	15	56	40.2	-22	1	40	A8 Ve	8.81	3.88	1.03	HAEBE	1	21.430	5.1
HD 104237	12	0	5.08	-78	11	34.6	A4 V	6.6	3.93	1.5	HAEBE	2 (3?)	33.290	11.2
CQ Tau 🛛 🕇	- 5	35	58	24	44	54	F2 IVe	10.7		-	HAEBE	1	14.000	40.0
BF Ori 🔶 🕇 🛨	5	37	13.3	-6	35	0.6	A5II-Illevar	10.3	3.83	1.48	HAEBE	1(?)	5.700	60.0
HD 34282	5	16	0.5	-9	48	35.4	A0e	9.85	3.94	1.15	HAEBE	2	79.500	10.7 / 8.2 / 8.2 (uby)
V 1247Ori	5	38	5.3	-1	15	21.7	A5III	9.82	3.86	1.2	PMS ?	1	10.300	20.0
beta Pic	- 5	47	17.1	-51	- 3	59.5	A5 V	3.86	3.91	1.05	PMS ?	2 (3?)	47.436	1.52 (spectroscopic)
VVSer 🔶 🛨	18	28	49	0	. 8	39	A2e	11.5	3.85	2.13	HAEBE	2 (3?)	6.100	10.0
V 375 Lac 🛛 🛨	22	34	40.9	40	40	5	A7e	12.94	3.86	2.08	HAEBE	2	5.100	36.0
WW Vul 🔶 🔶	19	25	58.7	21	12	31	A3e	10.51		-	HAEBE	1(?)	~4	4.0
PX Vul 🔶	19	26	40.3	- 23	53	49	F0Ve	11.67	-	-	HAEBE	1(?)	~5	40.0

\star =Variables studied by our group

From http://ams.astro.univie.ac.at/pms.php

Pulsation in IP Per: results from a multisite campaign

•IP Per is a Herbig Ae star with: V=10.34, sp. type A7V, logL/L~1.0±0.05, Teff ~8000±200 K (Miroshinichenko et al. 2001).

•We carried out a multisite campaign in $\overline{\text{BV}}$ involving 9 telescopes for a total of ~170h of observations (Ripepi et al. 2005 A&A submitted).

Pulsation in IP Per: results from a multisite campaign

Frequency analysis results

Table 3. Frequencies, amplitudes and confidence levels for the three dataset analysed in this paper. The errors on the frequencies are 0.25 c/d, 0.15 c/d and 0.11 c/d for the datasets 2002 B, 2003 B and 2003 V respectively.

	200	02 B dataset			20	03 B datset		2003 V dataset				
	Frequency	Amplitude	confidence		Frequency	Amplitude	confidence		Frequency	Amplitude	confidence	
	(c/d)	(mmag)	(%)		(c/d)	(mmag)	(%)		(c/d)	(mmag)	(%)	
f_1	30.48	3.2	99.9	f_1	22.89	3.1	99.9	f_1	22. 89	1.9	99.9	
f_2	22.88	3.3	99.9	f ₂	34.82	2.4	99.9	f_2	34.60	1.5	99.9	
f_3	34.64	3.3	99.9	fs.	48.45	2.3	99.9	f_3	30.45	1.8	99.9	
f_{+}	42.27	2.3	99.9	f_{+}	42.37	1.9	99.9	f_{4}	48.23	1.6	99.9	
f_{5}	48.31	1.9	99.9	f.	30.32	1.7	90.0	fs	28.79	1.5	99.9	
f_6	27.73	1.9	99.9	f 6	51.45	1.3	90.0	f_6	23.99	1.3	99.9	
								f_7	9.30	1.3	99.9	
								fz	41.11	1.2	99.9	
								f.,	52.00	1.1	99.9	

IP Per is a multiperiodic pulsator probably showing a mixture of radial and nonradial modes!

Radial pulsation analysis: evaluation of the mass and the position in the HR diagram

Evolutionary tracks are computed with the FRANEC code with the physical and numerical assumptions of the ESTA/COROT Task 1 From the computation of linear nonadiabatic pulsation models and the comparison between predicted and observed frequencies we find a best fit PMS model with 1.77Mo, logL=0.99, logTe=3.887, consistent with the empirical spettroscopic determination and reproducing five of the seven frequencies with radial modes.

The 1.77 Mo PMS and the 1.73 Mo postZAMS tracks intersect each other in the best-fit model position. Radial mode periodicities are quite similar for these two models ! But in both cases not all the frequencies are reproduced

Nonradial pulsation analysis: PMS versus post-MS models

We applied to the evolutionary structure of the 1.77Mo PMS models and of the 1.73 MS model the Aarhus adiabatic pulsation code and computed the theoretical frequencies for l=0,1,2,3

Nonradial pulsation analysis: PMS versus post-MS models

Echelle diagram

PMS

PostZAMS

Evolutionary models depend on many ingredients!

 Metallicity is important: according to some authors the metal abundance of IP Per could be as low as Z=0.008

Evolutionary models depend on many ingredients!

• The adopted opacity, equation of state, chemical mixture can also affect the models.

Evolutionary models depend on many ingredients!

 The mixing Inght α=l/Hp parameter is also crucial.

• To compare the results with the ones obained from other evolutionary and pulsation codes

• To explore in detail the dependence on the various physical inputs

To extend the analysis to other pulsators