

TASK 1

Results and Implications:

What needs to be done and how?

Yveline LEBRETON¹ & Mario MONTEIRO²

1: GEPI - Observatoire de Paris, France

2: Centro de Astrofísica da Universidade do Porto, Portugal

COROT - ESTA Workshop - Nice - Sep 2005

1

TASK1 proposed during COROT W7, Granada

7 specific, fully identified stellar cases (targets)

- representative range in stellar masses, composition, ages
- physics specified/ numerics to be investigated

case	M/M _O	Y ₀	Z ₀	X _c	Т _с (К)	M _{He core}	α _{ον}	state
1.1	0.9	0.28	0.02	0.35	-	-	-	MS
1.2	1.2	0.28	0.02	0.69	-	-	-	ZAMS
1.3	1.2	0.26	0.01	-	-	0.1M _☉	-	postMS
1.4	2.0	0.28	0.02	-	-	-	-	preMS
1.5	2.0	0.26	0.02	0.01	1.9 10 ⁷	-	0.15	TAMS
1.6	3.0	0.28	0.01	0.69		-	-	ZAMS
1.7	5.0	0.28	0.02	0.35		-	-	MS

 $M_{He \text{ core}} \Rightarrow$ mass of the central region where X<0.01

TASK1 : « standard » set of physics

Equation of state: OPAL tables (Rogers et al. 96, 01) Opacities : OPAL tables (Iglesias & Rogers 96) + AF tables at low temperatures (Alexander & Ferguson, 94) Nuclear reaction rates: NACRE (Angulo et al. 99) Convection: MLT (Böhm-Vitense 58, Henyey 65) with α_{MLT} =1.6 Overshoot: fully mixed and $\nabla = \nabla_{ad}$ with α_{OV} = 0 or 0.15 No diffusion/settling <u>Mixture</u>: solar mixture of Grevesse & Noels (93) Atmosphere: Eddington's grey atmosphere

COROT - ESTA Workshop - Nice - Sep 2005

Models from 6 stellar evolution codes have been compared

<u>ASTEC</u>: J. Christensen-Dalsgaard (Denmark) <u>CESAM</u>: P. Morel, Y. Lebreton (France) <u>CLES</u>: J. Montalban, R. Scuflaire (Belgium) <u>FRANEC</u>: M. Marconi, S. Degl'Innocenti (Italy) <u>STAROX</u>: I. Roxburgh (U.K.) <u>TGEC</u>: M. Castro (Toulouse)

PHYSICS

Equation of state:

TABLES from OPAL 96,01

<u>ASTEC, CESAM, FRANEC</u> ⇒ OPAL interpolation scheme

<u>CLES</u> \Rightarrow interpolation method ensures continuity of 1st derivatives at cell boundaries in the 4D space (variables logp, logT, X, Z)

<u>STAROX</u> \Rightarrow interpolation : 4 point cubics with continuous 1st derivatives TGEC : ?

COROT - ESTA Workshop - Nice - Sep 2005

Opacities :

OPAL95 + AF94 (Alexander & Ferguson) at low temperature

heavy elements mixture taken to initial value

ASTEC: Houdek interpolation scheme : bi-rational splines

- <u>CESAM</u>: Houdek scheme or 4 point Lagrange polynomial interpolation, tables merged at T=10⁴ K, conductive opacity included (Itoh)
- <u>CLES</u>: interpolation : same method as for the equation of state, smooth merging of tables in the domain 3.9<logT<4.15, no conductive opacity
- <u>STAROX</u>: tables (log T, log(ρ/T³),X,Z); interpolation : 4 point cubics with continuous 1st derivatives

<u>FRANEC</u>: spline interpolation in Z, cubic in T, ρ , linear in X, tables merged at log T<4.2, conductive opacity included (2 formulations possible)

<u>TGEC:</u> ?

Is the fitting between the two sets of tables worth to be investigated ?

NACRE : approximate analytical form (Angulo et al. 99) • <u>CESAM, STAROX</u> : follow all elements but ⁷Li, ²H, ⁷Be

- <u>CLES, FRANEC</u> : follow all elements including ⁷Li and ²H, except ⁷Be
- <u>TGEC</u> ?

rates by Bahcall & Pinsonneault (95)

• <u>ASTEC</u>: ³He and CN part of CNO cycle at equilibrium

NACRE has been recently implemented

Screening:

- ASTEC, CESAM: weak screening Salpeter 54
- FRANEC, STAROX: weak: Salpeter 54, weak-intermediate and intermediate-strong: Grabroske et al., de Witt et al 73
- <u>TGEC</u>?

COROT - ESTA Workshop - Nice - Sep 2005

7

Convection: MLT : Böhm-Vitense (58)

CESAM, ASTEC (probably) ⇒ Henyey et al.' formalism (65)

α_{MLT}=1.6, ξ=1/162, Φ=9/4

CLES, FRANEC ⇒ Cox & Giuli (1968) formalism

STAROX ⇒ modified MLT (Roxburgh 04)

TGEC?

MIXING-LENGTH

<u>CLES</u>: $l=\alpha_{MLT}min(H_p,h)$ where h is the thickness of the convection zone

<u>CESAM</u>: $I=\alpha_{MLT}min(H_p,h)$ modified to vanishes at convection zone boundaries

MIXING

- STAROX : modelled as a diffusion process, chemical profile smoothed for a shrinking core
- no turbulent pressure: CESAM, CLES, ASTEC, STAROX

Overshooting

fully mixed with α_{OV} = 0.0 or 0.15 H_p <u>CESAM</u> ($\nabla = \nabla_{ad}$ in the overshoot layer) <u>CLES</u> ($\nabla \neq \nabla_{ad}$ in the overshoot layer) <u>STAROX, ASTEC, TGEC</u> ?

fully mixed with $\alpha_{ov} = \Delta M_{ov}/H_{pm}$ where $H_{pm} = -dM/dlnP$ FRANEC

COROT - ESTA Workshop - Nice - Sep 2005

Atmosphere :

Eddington's grey atmosphere

ASTEC: outer boundary at $\tau = 10^{-2}$, connection with envelope at $T = T_{eff}(\tau = 2/3)$

<u>CESAM_V0</u>: outer boundary at τ =10⁻⁴, connection with envelope at τ =10

<u>CLES</u> : internal model truncated at τ =1, 10 or 100

STAROX: outer boundary at τ = 10⁻² or 10⁻³

Krishna Swamy's (1966) scaled solar T(tau) law

FRANEC : atmosphere down to $\tau = 2/3$

Hopf's atmosphere

<u>CESAM_V1</u>: outer boundary at τ =10⁻⁴, connection with envelope at τ =10

TGEC?

Reference values

 M_{\odot} =1.98919 10³³ erg.s⁻¹ GM_{\odot} =1.32712438 10²⁶ cm⁻³.s⁻¹ R_{\odot} =6.9599 10¹⁰ cm L_{\odot} =3.846 10³³ erg.s⁻¹

FRANEC : M_o=1.989 10³³ erg.s⁻¹; G =6.668 10⁻⁸ dyn cm².g⁻²

<u>Mixture</u>

solar mixture of Grevesse & Noels (93) Isotopic ratios to be checked

COROT - ESTA Workshop - Nice - Sep 2005

11

12

models starting point (except for case 1.4: PMS)
ASTEC, CESAM(PM): ZAMS
CLES, CESAM(YL), STAROX : PMS
FRANEC, TGEC?
number of shells
ASTEC: 601 shells between center and photosphere
CESAM: 1030 to 1300 shells in the interior + 100 shells in the atmosphere
CLES: 700 to 1400 shells in the interior + 100 shells in the atmosphere
CLES: 700 to 1400 shells in the interior
STAROX: 2000 shells
FRANEC: 800-900 + 300-400 sub-atmosphere
number of steps from ZAMS to TAMS
ASTEC: 30-40(200) time steps in models without (with) convective core
CESAM: about 400 time steps from PMS to TAMS in 2M_o models
CLES: about 100 time steps (1.4 M_o model)

CASE 1 1		Age	$rac{R}{R_{\odot}}$	$rac{L}{L_{\odot}}$	$T_{ m eff}$	$\frac{T_c}{10^7}$	$ ho_{c}$	X_{c}	$\frac{M_{\rm cor}}{M}$	$rac{R_{ m env}}{R}$
	Case 1.1:									
0.9 M $_{\odot}$	ASTEC	6745	0.8927	0.6237	5 4 3 4	1.443	150.5	0.3500	-	0.6954
V _0 25	$CESAM_0$	6782	0.8916	0.6262	5 4 4 3	1.448	150.9	0.3501	-	0.6958
$x^{c}=0.33$	$CESAM_1$	6886	0.8933	0.6237	5 4 3 2	1.444	150.0	0.3500	-	0.6957
7=0.02	CLES	6816	0.8954	0.6245	5 4 2 8	1.447	151.2	0.3496	-	0.6972
L=0.0L	FRANEC	6823	0.9038	0.6269	5 408	1.452	152.3	0.3500	-	0.7002
MS	STAROX	6674	0.8926	0.6259	5 4 3 9	1.446	151.8	0.3500	-	0.6964
	TGEC	6 5 3 9	0.8942	0.6504	5 489	1.458	153.9	0.3499	-	0.7015

	age	R∕R _⊙	L/L _o	T _{eff}	T _c /10 ⁷	ρ _c	R _{env} /R
min max	6539 6886	0.8916 0.9114	0.6237 0.6522	5408 5489	1.443 1.461	150.0 153.9	0.6954 0.7027
$\Delta_{max-min}$	347	0.0198	0.0285	81	0.018	3.9	0.0073
$\Delta_{\max-\min}/\max$	5.0%	2.2%	4.4%	1.5%	1.2%	2.5%	1.0%
CESAM ₀ vs CLES	0.5%	0.4%	0.3%	0.3%	0.1%	0.2%	0.2%

COROT - ESTA Workshop - Nice - Sep 2005

But outer regions !

COROT - ESTA Workshop - Nice - Sep 2005

15

GLOBAL PARAMETERS COMPARISON

CASE 1.2		Age	$\frac{R}{R_{\odot}}$	$\frac{L}{L_{\odot}}$	$T_{\rm eff}$	$\frac{T_c}{10^7}$	ρ_{c}	X_c	$\frac{M_{\rm cor}}{M}$	$\frac{R_{\rm env}}{R}$
	Case 1.2:									
1.2 M_{\odot}	ASTEC	074.4	1.151	1.789	6227	1.578	86.69	0.6900	0.0106	0.8288
	CESAM ₀	096.7	1.146	1.776	6231	1.577	86.65	0.6900	0.0087	0.8265
X _c =0.69	CESAM ₁	080.8	1.147	1.775	6226	1.575	86.46	0.6900	0.0087	0.8282
	CLES	098.5	1.146	1.778	6232	1.577	86.68	0.6900	0.0094	0.8292
Z=0.02	FRANEC	097.3	1.170	1.777	6166	1.575	86.91	0.6900	0.0087	0.8438
7	STAROX	101.5	1.148	1.778	6225	1.576	86.84	0.6900	0.0076	0.8292
ZAMS	TGEC	106.0	1.148	1.849	6 2 9 0	1.589	88.31	0.6900	0.0095	0.8423

	age	R∕R _⊙	L/L _⊙	T _{eff}	T _c /10 ⁷	ρ _c	M _{core} /M	R _{env} /R
min	74.4	1.146	1.775	6166	1.575	86.46	0.0076	0.8265
max	106.0	1.183	1.859	6290	1.590	88.31	0.0106	0.8497
$\Delta_{max-min}$	31.6	0.037	0.084	124	0.015	1.85	0.0019	0.0232
$\Delta_{\max-\min}/\max$	3.0%	3.1%	4.5%	2.0%	0.9%	2.1%	17.9%	2.7%
CESAM ₀ vs CLES	1.8%	0.0%	0.1%	0.02%	0.0%	0.3%	0.2%	0.3%

Less than 0.0015 but outer regions !

		Age	$\frac{R}{R_{\odot}}$	$\frac{L}{L_{\odot}}$	T_{eff}	$\frac{T_{c}}{10^{7}}$	ρ_{c}	X_{c}	$\frac{M_{\rm cor}}{M}$	$\frac{R_{\rm env}}{R}$
<u>CASE 1.6</u>	Case 1.6:									
3 M .	ASTEC	13.71	1.864	101.5	13 432	2.479	42.68	0.6900	0.2129	0.9990
5 M _O	CESAM ₀	14.47	1.854	101.4	13 466	2.486	43.04	0.6901	0.2114	0.9945
X.=0.69	$CESAM_1$	14.04	1.854	101.4	13 470	2.486	43.05	0.6900	0.2114	0.9945
	CLES	14.76	1.852	101.6	13 479	2.487	43.08	0.6900	0.2104	0.9938
Z=0.01	FRANEC	14.95	1.853	101.4	13 469	2.481	42.94	0.6894	0.2151	0.9939
	STAROX	14.46	1.855	101.6	13 468	2.487	43.17	0.6900	0.2118	0.9939
ZAMS	TGEC	21.00	1.981	78.5	12 223	2.401	40.50	0.6900	0.1976	0.9989

	age	R/R_{\odot}	L/L_{\odot}	T _{eff}	T _c /10 ⁷	ρ _c	M _{core} /M	R _{env} /R
min	13.71	1.852	101.4	13432	2.479	42.48	21.04	0.9938
max	14.95	1.864	104.5	13517	2.488	43.17	21.51	0.9990
	21.00	1.981	78.5	12223	2.401	40.50	19.76	0.9989
$\Delta_{max-min}$	1.24	0.012	3.1	85	0.009	0.60	0.47	0.0052
	7.29	0.129	26	1209	0.087	2.67	1.75	0.0051
$\Delta_{max-min}/max$	8.3%	0.6%	3.0%	0.6%	0.4%	1.6%	2.2%	0.5%
	35%	6.5%	24.9%	8.9 %	3.5%	6.2%	8.1%	0.5%
CESAM ₀ vs CLES	2.0%	0.1%	0.2%	0.1%	0.04%	0.1%	0.4%	0.07%

COROT - ESTA Workshop - Nice - Sep 2005

21

GLOBAL PARAMETERS COMPARISON

<u>CASE 1.7</u>		Age	$\frac{R}{R_{\odot}}$	$\frac{L}{L_{\odot}}$	T_{eff}	$\frac{T_c}{10^7}$	ρ_{c}	X_c	$\frac{M_{\text{cor}}}{M}$	$\frac{R_{\text{env}}}{R}$
5 M $_{\odot}$	Case 1.7:		0							
X =0 35	ASTEC	56.88	3.905	748.2	15 291	2.829	19.49	0.3500	0.1600	0.9996
$N_{c} = 0.33$	CESAM ₀	55.94	3.854	739.6	15 348	2.836	19.76	0.3498	0.1567	0.9943
7=0 02	$CESAM_1$	55.58	3.852	739.4	15 350	2.836	19.77	0.3500	0.1568	0.9943
2-0.02	CLES	56.39	3.865	741.8	15 337	2.837	19.77	0.3500	0.1564	0.9932
MS	FRANEC	54.98	3.867	745.1	15350	2.833	19.68	0.3502	0.1621	0.9929
	STAROX	55.60	3.871	744.9	15342	2.838	19.76	0.3500	0.1597	0.9929

	age	R/R_{\odot}	L/L_{\odot}	T _{eff}	T _c /10 ⁷	ρ _c	M _{core} /M	R _{env} /R
min	54.73	3.852	739.4	15291	2.829	19.49	0.1564	0.9928
max	56.88	3.905	772.3	15395	2.844	19.77	0.1638	0.9996
$\Delta_{max-min}$	2.15	0.053	32.9	104	0.015	0.27	0.0074	0.0068
$\Delta_{max-min}/max$	3.8%	1.4%	4.3%	0.7%	0.5%	1.4%	4.5%	0.7%
CESAM ₀ vs CLES	0.8%	0.3%	0.3%	0.1%	0.04%	0.05%	0.2%	0.1%

CASE 1.7

CASE 1.4 RL T_c M_{HeC} M_{cor} T_{eff} Age X_c ρ_c $2 M_{\odot}$ L_{\odot} 107 R_{\odot} M_{\odot} Μ Case 1.4: T_c=1.9 10⁷ CESAM₀ 7.043 1.900 49.22 0.6994 0.1075 1.866 15.80 8431 CESAM₁ 6.643 1.871 15.97 8444 1.900 49.01 0.6994 0.1148 -Z=0.02 CLES 7.716 1.875 16.23 8 469 1.900 50.17 0.6993 0.0927 -FRANEC 8.0168 1.869 16.04 8457 1.897 50.03 0.6993 0.0977 preMS STAROX 8.292 1.900 49.19 1.862 15.64 8419 0.6994 0.1077 -TGEC 7.200 1.839 15.27 8427 1.891 46.86 0.7009 0.1328 _

	age	$ m R/R_{\odot}$	L/L _o	T _{eff}	X _c	ρ _c	M _{core} /M	R _{env} /R
min	6.643	1.862	15.27	8419	0.6993	46.86	0.0927	0.9915
max	8.292	1.879	16.50	8484	0.7009	50.17	0.1328	0.9989
$\Delta_{max-min}$	1.639	0.017	1.23	65	0.0016	3.31	0.0401	0.0074
$\Delta_{max-min}/max$	19 .9 %	0.9%	7.5%	0.8%	0.2%	6.6%	30.2%	0.7%
CESAM ₀ vs CLES	8.7%	0.5%	2.6%	0.4%	0.0%	1.9%	13.8%	0.7%

HYDROGEN PROFILE

<u>CASE 1.4</u>: preMS 2 M_{\odot} ; T_c=1.9 10⁷ K Z=0.02

 R_{env}

R

0.9988

0.9918

0.9915

0.9986

0.9917

0.9989

GLOBAL PARAMETERS COMPARISON

CASE 1.3		٨٥٥	R	L	Τ	T_{c}	0	v	$M_{\rm HeC}$	$M_{\rm cor}$	$R_{ m env}$
1 2 44		Age	$\overline{R_{\odot}}$	$\overline{L_{\odot}}$	1 eff	10^{7}	ρ_{c}	Λ_c	M_{\odot}	M	R
1.2 M _O	Case 1.3:										
M _{He core}	ASTEC	4314	2.164	5.513	6019	2.183	3 2 7 6	-	0.1000	-	0.7794
	$CESAM_1$	4 5 5 2	2.164	5.582	6037	2.187	3 206	-	0.1000	-	0.7824
Z=0.01	CLES	4 401	2.170	5.617	6038	2.205	3 2 1 0	-	0.1000	-	0.7843
postMS	FRANEC	4 2 5 7	2.245	5.623	5937	2.197	3 1 1 0	-	0.0997	-	0.8013

	age	R∕R _⊙	L/L _☉	T _{eff}	Ţ _c /10	ρ _c	R _{env} /R
					,		
min	4207	2.164	5.513	5937	2.183	3110	0.7794
max	4552	2.275	5.808	6038	2.205	3276	0.8013
$\Delta_{\max-\min}$	345	0.111	0.295	101	0.022	166	0.0219
$\Delta_{\max-\min}/\max$	7.5%	5%	5%	1.7%	1%	5.1%	2.7%

CASE 1.5 T_{c} RL M_{cor} M_{HeC} R_{env} Age T_{eff} X_c ρ_c $2 M_{\odot}$ 107 R_{\odot} $\overline{L_{\odot}}$ M_{\odot} M RCase 1.5: X_c=0.01 ASTEC 1174 3.542 22.62 6695 2.784 130.5 0.0100 0.0778 0.9872 Z=0.02 CESAM₀ 1185 3.543 22.91 6715 2.794 131.8 0.0100 0.0770 0.9870 2.795 CESAM₁ 1173 3.537 22.87 6718 131.8 0.0100 0.0770 0.9871 α_{ov}=0.15 CLES 1 2 0 9 3.634 23.38 6665 2.800 131.7 0.0100 0.0628 0.9862 STAROX 1 1 97 3.652 23.32 6644 2.801131.8 0.0101 0.0635 0.9854 TAMS TGEC 1 2 0 2 3.415 22.64 6823 2.778 129.9 0.0133 0.0600 0.9894

	age	R/R_{\odot}	L/L_{\odot}	T _{eff}	Ţ ₇ ,/10	ρ _c	M _{core} /M	R _{env} /R
min	1173	3.537	22.62	6644	2.784	129.9	0.0770	0.9854
max	1209	3.652	23.38	6823	2.801	131.8	0.0600	0.9894
$\Delta_{max-min}$	36	0.115	0.76	179	0.017	1.9	0.0170	0.0040
$\Delta_{\max-\min}/\max$	3%	3.1%	3.3%	2.6%	0.6%	1.4%	22.1%	0.4%
CESAM ₀ vs CLES	2%	2.5%	2%	0.7%	0.2%	0.1%	18.4%	0.08%

HYDROGEN PROFILE

CASE 1.5: TAMS

 $2~\ensuremath{\text{M}_{\odot}}\xspace$; X_c=0.01 ; Z=0.02

α_{ov}=0.15

SOUND SPEED COMPARISON : postMS model

CASE 1.5

COROT - ESTA Workshop - Nice - Sep 2005

CONCLUSIONS

GLOBAL PARAMETERS

models are consistent to first order :

differences in global parameters range from 1 to 5%

but age \Rightarrow up to 10-20%, $M_{core} \Rightarrow$ up to 20-30%

but PMS \Rightarrow 7-8% on L, ρ_c

part of the differences result from

specifications for the targets not precisely followed

reference physics not fully implemented in some codes

must be checked and quantified ! <u>STEP 0</u> !

CLES/CESAM₀: very close physical inputs ⇒ differences <0.5%

but PMS, overshooting increase differences

INTERIOR

main differences appear at the edge of the convective regions

- narrow regions appear where differences are high
- evolved models carry the signature of convective core displacements

zones of nuclear energy production also identified

large differences at the surface

COROT - ESTA Workshop - Nice - Sep 2005

35

TASK1 : WHAT SHOULD BE DONE?

1ST STEP :

• eliminate remaining evident differences in the physics : check isotopic ratios, screening, formulation of convection, overshooting, conductive opacities

• try to estimate the weight of numerics:

easy? number of shells, of time steps, interpolation methods for opacities, EOS, nuclear rates, fitting temperature for opacity tables, interface with atmosphere (fitting level, boundary conditions)...

more difficult! treatment of convective limits and their evolution in time, overshooting, associated mixing... can we explore the methods and agree on a preferred one?

•simplify the physics for specific difficult cases: compare case1.5 with/without overshooting...

.../... 36

TASK1 : WHAT SHOULD BE DONE?

<u>1ST STEP</u>:

- compare the whole sequences of evolution

 evolutionary track in HR diagram
 model originating from PMS vs. ZAMS model
 interior of models at particular evolution stages (constant X_c on the MS)
 evolution of : size of the convective core, convective envelope depth
- decide <u>now</u> what quantities to be compared next
- decide of the acceptable degree of agreement necessary for COROT global parameters/internal differences

COROT - ESTA Workshop - Nice - Sep 2005

37

TASK1 : WHAT SHOULD BE DONE?

2ND STEP :

• sophisticate the physics : include diffusion/settling, overshooting

<u>NOW</u> :

Decide what quantities to be compared

NEXT COROT WEEK

Presentation of the results of the comparisons (end of Step 1)

Go further on step 2: decide what more sophisticated physics to be considered