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I. Introduction

The eigenfrequencies and the eigenfunctions of oscillations in stars can be ob-
tained as solutions of a set of equations derived from the basic equations of stel-
lar structure. This makes it possible to calculate these solutions numerically by
applying the oscillation equations to an equilibrium model of a star. Such stellar
oscillation codes have been developed over the years by numerous researchers
in the fields of helio- and asteroseismology. In the context of the ongoing re-
search for the forthcoming asteroseismic missions, including COROT, it might
be worthwhile to compare the results of these codes in order to estimate the un-
certainties even in a purely theoretical exercise and to devise possible ways to
refine their accuracy. In the present exercise, we compare the eigenfrequencies
generated by four stellar oscillation codes developed independently by different
authors. It must be stressed that we consider only the numerical agreement, or
lack thereof, between these codes as applied to the same stellar models under
identical boundary conditions. Comparison of the relative performance of the
codes in terms of speed, absolute accuracy of results or flexibility and range of
application is outside the scope of this study.

II. The Oscillation Codes

The general scheme of the exercise is to run the different codes with the same
input equilibrium stellar model to calculate the eigenfrequencies of low degree
p-modes of oscillation. The boundary conditions are identical in each case, be-
ing that the Lagrangian pressure perturbation vanishes at the outer boundary.
Only frequencies less than the acoustic cutoff are used for comparison.

We compare four stellar oscillation codes developed by different authors. All
the codes use the adiabatic approximation. We distinguish them according to
the authors and give a brief description of each below.

1. By J. Christensen-Dalsgaard (Aarhus), known as ADIPLS
The ADIPLS code (http://astro.ifa.au.dk/ � jcd/adipack.n) has been used as the
primary template for the frequencies, i.e., the frequencies obtained from all the
other three codes are compared to the frequencies computed by ADIPLS.

The ADIPLS code provides two sets of solutions for each model — frequencies
calculated by application of the variational principle and frequencies corrected
for truncation errors through Richardson extrapolation. We denote these fre-
quencies by νJ

�
V � and νJ

�
R � , respectively. One major difference of the ADIPLS

code with the other three is that while it solves the full fourth-order set of equa-
tions for non-radial oscillations, in the radial case the perturbation in the gravi-
tational potential is eliminated analytically and a second-order set of equations
are used. It is possible that this is the reason behind the somewhat different be-
haviour of ��� 0 modes of this code with respect to the other codes as compared
to non-radial modes.

2. By I. W. Roxburgh & S. V. Vorontsov (QMUL)
This code does not employ the Richardson extrapolation technique. Instead, it
solves the equations through a fourth-order Runge-Kutta method, which requires
an interpolation of the supplied model to produce a finer grid of mesh points. We
denote the frequencies from this code by νR.

3. By H. M. Antia (TIFR)
Antia’s code uses the Richardson extrapolation method to produce the final set
of frequencies. These frequencies are denoted by νA.

4. By L. Léon & F. Tran Minh (Meudon), known as FILOU
Although the FILOU code (Tran Minh & Léon 1995) does not apply the
Richardson technique, the frequencies used in this exercise were actually cor-
rected through this extrapolation method by running the code on the full grid
and a coarser grid of alternate mesh points. We refer to these frequencies by νL.

III. The Models

Three stellar models were primarily used in this study, although several other
models were used to check various aspects of the differences between the out-
put from the codes. It is sufficient to focus here on these three models only to
highlight the salient features of the analysis. We are guided in our choice of
these models by the desire to test the codes on a fairly regular and smooth model
(Model A below) as well as on models which might have some irregular features
due to numerical difficulties encountered especially at the edges of convective
regions (Models B and C).

A. Solar model — “Model S”
The first model that we consider is a solar model, described by Christensen-
Dalsgaard et al.(1996) which has been extensively used as a reference for he-
lioseismic inversion. The model uses OPAL equation of state and opacity, and
includes diffusion of helium and heavy elements. This model provides the nec-
essary quantities for the oscillation codes on 2482 mesh points, including the
atmosphere.

B. CESAM model of mass 1.2 M �
The second model is a stellar model of mass 1 � 2 M � and central hydrogen abun-
dance of 0 � 4, generated by the CESAM evolutionary code (Morel 1997). OPAL
equation of state and opacity was used to build this model. Diffusion of helium
and heavy elements and convective overshoot were not considered. This model
has a mesh size of 2099 points, including the atmosphere. This model has certain
irregularities in the Brunt-Väisäla frequency profile at the edge of the convective
core due to the sharp change in the density gradient.

C. CESAM model of mass 1.5 M �
Finally, we consider another stellar model of mass 1 � 5 M � and central hydrogen
abundance of 0 � 5, which is also generated by the CESAM evolutionary code
and contains the same input physics as the second model described above. The
structure of this model near the edge of the convective core is much more regular
than the previous model.
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Figure 1: The nine figures above illustrate the main results of this study. The three columns refer to the three models — the solar model, the 1 	 20M 
 and the 1 	 50M 
 models, from left to right respectively.

In each column, the top figure shows the comparison of the frequencies obtained from Roxburgh’s, Antia’s and the FILOU code against the variational frequencies obtained from Christensen-Dalsgaard’s

ADIPLS code. The middle figures show the comparison with respect to the Richardson frequencies obtained from ADIPLS. The bottom figures show the difference between the variational and the Richardson

frequencies. In each figure of the top two rows, the top left panel plots the difference between ADIPLS and Roxburgh frequency against the ADIPLS frequency, the top right panel plots the difference

between ADIPLS and Antia frequency against the ADIPLS frequency, the bottom left panel plots the difference between ADIPLS and FILOU frequency against the ADIPLS frequency, and the bottom right

panel plots the difference between Roxburgh and Antia frequency against the Roxburgh frequency. The different modes of oscillation are distinguished by separate colours and symbols.

IV. Results

The main results of this comparative study are illustrated in Figure 1. We summarise them for each of the three models considered.

A. Solar model — “Model S”
For the solar model, the agreement between the five sets of frequencies, νJ

�
V � , νJ

�
R � , νR, νA and νL is typically within 0 � 1 µHz. Specifically, νA agrees very well with the

ADIPLS variational frequency, except for the radial mode, while νR has excellent agreement (down to the output accuracy of the codes) with the ADIPLS Richardson
frequency. In fact, the third figure of this set (bottom left corner) shows that there is a difference of up to 0 � 08 µHz between the variational and the Richardson frequencies,
both calculated by ADIPLS. At higher frequencies, there also seems to be an oscillatory pattern in these differences. The difference between the variational and the
Richardson frequency actually indicates the departure of the model from perfect hydrostatic equilibrium. Another feature which should be noted in these figures is the
distinctly different pattern in the differences of the ��� 0 mode compared to the non-radial modes (see e.g., νJ

�
V � vs νA comparison). This occurs nearly for all comparisons

with the ADIPLS frequencies for this model as well as the other two models and might be due to the fact that the radial mode equations are treated differently in ADIPLS,
as described above.

B. CESAM model of mass 1.2 M �
The magnitude of the differences between the frequencies for the 1 � 20M � model are generally higher than that of the solar model, although the pattern is similar. The
differences typically increase with frequency, and the maximum deviation is � 0 � 12 µHz. Again, the ADIPLS radial mode behaves slightly differently. The discrepancy
between the variational and the Richardson frequencies are up to 0 � 18 µHz in this case, which might indicate a greater hydrostatic imbalance in the model. This is not
surprising, given the structural irregularities near the edge of the convective core in this model.

C. CESAM model of mass 1.5 M �
The differences in the frequencies for the 1 � 50M � model are somewhat larger than the other two models, with maximum values of up to 0 � 18 µHz in specific cases. This
occurs despite the fact that this model is, in general, more smooth than the 1 � 2M � model. Interestingly, the difference between the variational and Richardson frequencies
of ADIPLS are smaller in this this case, except for a couple of non-radial modes at the lowest frequencies. Also, the oscillatory pattern observed in the νJ

�
V � vs νJ

�
R � plots

at high frequencies seen in the other two cases is absent in this case.

To conclude, it is encouraging to note that the differences in the frequencies obtained from four independent oscillation codes are on the average about 0 � 05 µHz, and
seldom exceed 0 � 1 µHz. This is comparable to the expected best case scenario of observational data. The agreement between the codes is better for the solar model, as
might be expected.

On one hand, these comparisons might lead us to improve the numerical techniques involved in the solution of the oscillation equations. On the other, the differences in the
frequencies, especially those between the variational and Richardson frequencies, might serve as a test for the structural imperfections in the input stellar models. Similar
comparative studies between stellar models generated by different evolution codes might be helpful in this regard. We hope that even better agreement of the frequencies
can be obtained by addressing these problems both in the model construction and the solution of oscillation equations.
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